首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind pollination was experimentally demonstrated in Linanthus parviflorus (Polemoniaceae), a predominantly beefly-pollinated, self-incompatible annual. Seed set in plants enclosed in mesh tents that excluded pollinators but allowed airborne pollen flow provided evidence for wind pollination, and the extent of seed set due to wind pollination was compared to that in open-pollinated controls and pollen-supplemented treatments. Additional controls were included to test for possible confounding effects of the mesh tent. Mean seed number in open-pollinated plants was 72.8–81.1% of that in pollen-supplemented plants, while wind pollination alone produced 49.5–52.2%, a smaller but substantial proportion of seed set with pollen supplementation. Further evidence for wind pollination was found in a comparison of sites differing in the extent of wind exposure in two populations of L. parviflorus. Airborne pollen counts were higher in exposed sites than in protected sites, and the difference was marginally significant. Seed set was significantly pollen limited in protected sites, but not in exposed sites. Taken together, the data suggest that wind pollination provides some reproductive assurance in this obligately outcrossing species. Wind pollination is hypothesized to represent an alternative to selfing as an evolutionary solution to the problem of temporal or spatial variation in pollination visitation.  相似文献   

2.
    
Recent studies of mating system evolution have attempted to include aspects of pollination biology in analysis of both theoretical models and experimental systems. In light of this growing trend, we propose a simple population genetic model for the evolution of gametophytic self-incompatibility, incorporating parameters for pollen discounting and pollen export/capture. In this model, we consider several cases that span the spectrum for dominance of the mutant self-incompatibility allele and for the degree of incompatibility conferred by the allele. We confirm earlier results that inbreeding depression is required for successful invasion of the self-incompatibility allele and we demonstrate that, unless pollen discounting is very low, the level of inbreeding depression must be very high for an allele conferring self-incompatibility to become established. Finally, we show that the dominance of the mutant allele has a greater impact on the fate of a newly arisen self-incompatibility allele than the strength of the incompatibility conferred by the allele. In particular, the more recessive the self-incompatibility expression in heterozygote stigmas and the weaker the response induced, the easier it is for a self-incompatibility allele to invade.  相似文献   

3.
    
Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of divergence in floral characters associated with the mating system, an important adaptive trait in angiosperms. Two species of Leptosiphon (Polemoniaceae), one strongly self-fertilizing (L. bicolor) and the other partially outcrossing (L. jepsonii), were crossed to produce F2 and both backcross progenies. For each crossing population, a linkage map was created using amplified fragment length polymorphism markers, and QTL were identified for several dimensions of floral size. For each of the five traits examined, three to seven QTL were detected, with independent datasets yielding congruent results in some but not all cases. The phenotypic effect of individual QTL was generally moderate. We estimated that many of the QTL were additive or showed dominance toward L. bicolor, whereas comparison of mean trait values for parental and cross progenies showed apparent overall dominance of L. jepsonii traits. Colocalization of QTL for different dimensions of floral size was consistent with high phenotypic correlations between floral traits. Substantial segregation distortion was observed in marker loci, the majority favoring alleles from the large-flowered parent. A low frequency of male sterility in the F2 population is consistent with the Dobzhansky-Muller model for the evolution of reproductive isolation.  相似文献   

4.
  总被引:1,自引:0,他引:1  
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.  相似文献   

5.
    
Early models of plant mating-system evolution argued that predominant outcrossing and selfing are alternative stable states. At least for animal-pollinated species, recent summaries of empirical studies have suggested the opposite-that outcrossing rates do not show the expected bimodal distribution. However, it is generally accepted that several potential biases can affect conclusions from surveys of published outcrossing rates. Here, we examine one potential bias and find that published studies of outcrossing rates contain far fewer obligate outcrossers than expected. We approximate the magnitude of this study bias and present the distribution of outcrossing rates after compensating for it. Because this study examines only one potential bias, and finds it to be large, conclusions regarding either the frequency of mixed mating or the shape of the distribution of outcrossing rates in nature are premature.  相似文献   

6.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

7.
8.
The self-incompatibility (SI) status of 571 taxa from the Asteraceae was identified and the taxa were scored as having SI, partial SI or self-compatibility (SC) as their breeding system. A molecular phylogeny of the internal transcribed spacer (ITS) region was constructed for 211 of these taxa. Macrophylogenetic methods were used to test hypotheses concerning the ancestral state of SI in the Asteraceae, the gain and loss of SI, the irreversibility of the loss of SI and the potential for partial SI or SC to be terminal states. The ancestral breeding system in the family could not be resolved. Both maximum likelihood and parsimony analyses indicated that transitions among all breeding system states provide the best fit to the data and that neither partial SI nor SC is a terminal state. Furthermore, the data indicated that the loss of SI is not irreversible, although breeding system evolution has been more dynamic in some clades than in others. These results are discussed within the context of evidence for the gain and loss of SI, the evolutionary role of partial SI and methodological assumptions of tests of breeding system evolution.  相似文献   

9.
10.
The strength of the self-incompatibility (SI) response in Senecio squalidus was measured across its British range. Geographic variation in SI was investigated and the extent and inheritance of pseudo-self-compatibility (PSC) and inbreeding depression were determined. Mean self-fruit-set per capitulum was calculated for individuals and sample populations. The heritability of PSC and the magnitude of inbreeding depression were assessed by comparing selfing rates and fitness trait values between SI and PSC parent-progeny lines. SI was found to be strongly expressed in S. squalidus throughout its British range, with only 3.1% of the individuals sampled showing PSC. This PSC had relatively low heritability with stronger expression of SI in selfed progeny relative to PSC parents. Inbreeding depression was shown to be great in S. squalidus, with mean life history stage values ranging from 0.18 to 0.25. The strength of SI in S. squalidus appears not to have weakened in response to its rapid colonization of Britain. The avoidance of inbreeding depression is likely to be the primary factor maintaining strong SI in this successful colonizing species.  相似文献   

11.
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations.  相似文献   

12.
Sicard A  Lenhard M 《Annals of botany》2011,107(9):1433-1443

Background

In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma.

Scope

A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome.

Conclusions

We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.  相似文献   

13.
    
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of \"late\" inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (delta = 0.68) in the more diverse population and somewhat lower (delta = 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.  相似文献   

14.
    
The deleterious effects of inbreeding have long been known, and inbreeding can increase the risk of extinction for local populations in metapopulations. However, other consequences of inbreeding in metapopulations are still not well understood. Here we show the presence of strong inbreeding depression in a rockpool metapopulation of the planktonic freshwater crustacean Daphnia magna, which reproduces by cyclical parthenogenesis. We conducted three experiments in real and artificial rockpools to quantify components of inbreeding depression in the presence and the absence of competition between clonal lines of selfed and outcrossed genotypes. In replicated asexual populations, we recorded strong selection against clones produced by selfing in competition with clones produced by outcrossing. In contrast, inbreeding depression was much weaker in single-clone populations, that is, in the absence of competition between inbred and outbred clones. The finding of a competitive advantage of the outbred genotypes in this metapopulation suggests that if rockpool populations are inbred, hybrid offspring resulting from crosses between immigrants and local genotypes might have a strong selective advantage. This would increase the effective gene flow in the metapopulation. However, the finding of low inbreeding depression in the monoclonal populations suggests that inbred and outbred genotypes might have about equal chances of establishing new populations.  相似文献   

15.
16.
    
Genera Myxobolus Bütschli, 1882 and Henneguya Thélohan, 1892 (Myxobolidae) are specious myxozoan genera. They comprise nearly half of overall known myxozoan species diversity. A typical spore feature of Henneguya is the presence of two caudal appendages of the spore valves, which distinguishes them from species of the genus Myxobolus. Several Myxobolus spp., however, were reported to show aberrant spores with Henneguya-like caudal appendages. We found such aberrant spores in Myxobolus tsangwuensis and Myxobolus wulii. We studied the ultrastructure of M. wulii and Myxobolus oralis spores with caudal appendages by transmission electron microscopy (TEM). TEM of these aberrant spores revealed that their caudal appendages have the same ultrastructure as the appendages of Henneguya spp. Small caudal appendages of M. wulii spores observed only on TEM suggested that this character may be often overlooked and more Myxobolus species potentially have the ability to express the caudal appendages on the myxospore. In order to trace the evolution of this character, we performed broad phylogenetic analysis of all species of the family Myxobolidae which are available in GenBank including nearly 300 taxa. We found at least eight independent evolutionary origins of spores with two appendages, three origins of a single appendage and 12 apparent secondary losses of the spore projections. Therefore, genus Henneguya with typical two-tailed myxospores is polyphyletic, however a majority of its species has a common ancestor and groups in the second largest subclade of the Myxobolus clade. We also mapped the biological characteristics (host, site of infection and environment) of Myxobolidae species on the phylogenetic tree. We revealed an evident host-associated evolutionary pattern in all parts of the Myxobolus clade with a distinct and species-rich subclade containing almost exclusively species infecting species of the Order Cypriniformes.  相似文献   

17.
Background and Aims The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus.Methods The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank.Key Results Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids.Conclusions Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group.  相似文献   

18.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here, we analyze a model for the fixation probability of deleterious mutants that hitchhike with selective sweeps in diploid, partially selfing populations. Approximate analytical solutions show that, conditional on the sweep not being lost by drift, higher inbreeding rates increase the fixation probability of the deleterious allele, due to the resulting reduction in polymorphism and effective recombination. When extending the analysis to consider a distribution of deleterious alleles, as well as the average fitness increase after a sweep, we find that beneficial alleles generally need to be more recessive than the previously assumed dominance threshold (h < 1/2) for selfing to be beneficial from one-locus theory. Our results highlight that recombination aiding the efficiency of selection on multiple loci amplifies the fitness benefits of outcrossing over selfing, compared to results obtained from one-locus theory. This effect additionally increases the parameter range under which obligate outcrossing is beneficial over partial selfing.  相似文献   

19.
Twenty-seven flavonoids were found among three species of Leptodactylon and sixteen species of Linanthus, of which only three were identical between the two genera. This argues strongly for the maintenance of two genera; however, the underlying similarities in coumarins, flavonol glycosides, chrysoeriol and glycoflavones suggest that the two genera are closely related. The flavonoid data also suggest that Leptodactylon and Linanthus of the tribe Gilieae may actually be closer to Phlox and Microsteris of the tribe Polemonieae, than to other Gilieae.  相似文献   

20.
Many species exhibit reduced siring success of self-relative to outcross-pollen donors. This can be attributed either to postfertilization abortion of selfed ovules or to cryptic self-incompatibility (CSI). CSI is a form of self-incompatibility whereby the advantage to outcross pollen is expressed only following pollinations where there is gametophytic competition between self and outcross pollen. Under the definition of CSI, this differential success is due to the superior prefertilization performance (pollen germination rate and pollen tube growth rate) of outcross pollen relative to self pollen. Although CSI has been demonstrated in several plant species, no studies have assessed among-population variation in the expression of CSI. We conducted a greenhouse study on Clarkia unguiculata (an annual species with a mixed-mating system) to detect CSI, and we compare our observations to previous reports of CSI in C. gracilis and another population of C. unguiculata. In contrast to these previous studies of CSI in Clarkia, we used genetic rather than phenotypic markers to measure the relative performance of selfed vs. outcross pollen. In this study, we measured the intensity of CSI in C. unguiculata from a large population in southern California and we determined whether the magnitude of pollen competition (manipulated by controlling the number of pollen grains deposited on a stigma) influenced the outcome of competition between self and outcross pollen. In contrast to previous investigations of Clarkia, we found no evidence for CSI. The mean number of seeds sired per fruit did not differ between self and outcross pollen following either single-donor or mixed pollinations. In addition, the relative success of selfed vs. outcross pollen was independent of the magnitude of pollen competition. These results suggest that: (1) one of the few nonheterostylous species previously thought to be cryptically self-incompatible is completely self-compatible (at least in the population studied here) or (2) phenotypic markers may be problematic for the detection of CSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号