首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shift from outcrossing to selfing is one of the most common evolutionary trends in plants, and there is intense interest in why this is so. The genus Leavenworthia has been the focus of research on this question for half of a century, with particular attention paid to the evolution of self-compatibility from self-incompatibility. In this review, we discuss the last 50 years of research concerning this evolutionary transition in Leavenworthia. Selfing appears to have evolved independently at minimum three times within this genus of eight species. Work on the ecological basis of mating system evolution in Leavenworthia has clarified that selection among individuals is likely a major force behind the recurrent evolution of selfing. Although inadequate pollination is appreciated as a factor favoring selfing, definitive ecological mechanisms that act to favor selfing are still not known and future work on the efficacy of pollinating bees and the effects of climate change is needed. Recent research has likely identified the SRK ortholog at the S-locus controlling self-incompatibility in Leavenworthia alabamica. Analyses of S-locus variation have revealed substantial S-allele diversity in outcrossing populations, with the recurrent fixation of mutations at the S-locus permitting the parallel evolution of selfing in this species. Although we appreciate some of the factors that may explain the evolution of selfing in this group, there is less known about the mechanisms underlying the widespread maintenance of outcrossing at the population and species levels. Studies in Leavenworthia have revealed that genetic diversity is lost over the long-term within selfing populations and leads to elevated population subdivision, but work is needed to determine why these genetic consequences of selfing cause lineages to become evolutionary dead ends.  相似文献   

2.
Surveys of oceanic island floras have shown that heterostyly is usually absent in such regions, probably because this floral polymorphism is often associated with a self-incompatibility system. In this context we describe the floral biology of three species ofErythroxylum on La Réunion island and examine the compatibility relationships of one of these species,E. laurifolium. All three species are distylous but differ in relative stigma-anther separation in the different morphs. In general, short-styled flowers have greater stigma-anther separation than long-styled flowers, which are often homostylous in appearance. This lack of stigma-anther separation in long-styled flowers is due to style twisting which improves reciprocity at the high organ level. The reduced stigma-anther separation does not appear to be associated with the evolution of selfing asErythroxylum laurifolium shows heteromorphic self-incompatibility. The presence of heteromorphic incompatibility in a group of species that have colonized an oceanic island is discussed.  相似文献   

3.
Genetic diversities were examined using six microsatellite markers amplifiable in three rare and one widespread species of Tricyrtis section Flavae, which are endemic to Japan. Contrary to a general expectation, the three rare species, Tricyrtis flava, Tricyrtis ohsumiensis and Tricyrtis perfoliata, have comparable genetic variation at the species level to that of the widespread Tricyrtis nana. This is probably because T. nana has not sufficiently recovered genetic diversity from the bottleneck at speciation or because recent range contractions have occurred in the three rare species. Genetic diversity at the population level was smaller in the putative selfing species T. nana than in the other three outcrossing species. Compared with a preceding study using allozyme markers, the genetic diversity in microsatellite loci was considerably larger, probably resulting from higher mutation rates at the microsatellite loci. Owing to the high genetic diversity of the microsatellite markers, genetic differentiation among populations could be estimated even in T. nana with little allozyme polymorphism.  相似文献   

4.
It has been assumed that species of the large African genus Protea have strong self‐incompatibility systems. However, this assumption was based largely on studies conducted on a clade of bird‐pollinated species that occur in the shrubby fynbos vegetation of the Cape region of southern Africa. To test whether self‐incompatibility occurs in a grassland/savanna Protea clade, which is largely insect‐pollinated, we performed controlled pollination experiments on four species, P. caffra, P. dracomontana, P. simplex and P. welwitschii. Although pollen–ovule ratios of all four species fall within the range for outcrossers, all four species are self‐compatible and capable of autonomous seed production. Using fluorescence microscopy, we found that self‐pollen tubes had the same probability of reaching ovules as cross‐pollen tubes. In the small tree P. caffra, selfed progeny had rates of germination and survivorship that were identical to those of crossed progeny. The grassland Protea spp. studied are likely to have mixed mating systems on account of being both visited by insects and capable of autonomous selfing. If one assumes previous reports of self‐incompatibility in Protea to be reliable, there have been at least five losses of self‐incompatibility and two gains of autonomous selfing in this genus. However, earlier studies in the genus were often methodologically flawed and a thorough re‐analysis of breeding systems in Protea is required. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 433–446.  相似文献   

5.
We investigated the reproductive system of the threatened taxon Dombeya acutangula ssp. acutangula Cav. (Sterculiaceae), an endemic tree of the Mascarene archipelago (Indian Ocean). A controlled crossing experiment was performed in two natural populations located in the remnants of the low-elevation dry forest on the island of La Réunion. Active pollination, probably mainly by insects, was necessary for reproduction in this species. Individuals varied in their degree of self-sterility from 0 to 100%. Outcrossing between nearby individuals produced lower seed set than did crosses between more distant individuals within one of the two tested populations. The variation in reproductive success on selfing and in the different types of crosses could result from inbreeding depression causing embryo death, and we provide evidence that progenies from selfing have lower seed size and quality. However, for inbreeding depression to account for the dramatic variation in seed set found in our crossing experiment, the distribution of genetic load and number of lethal factors required appear unrealistic. We favour an alternative interpretation, that D. acutangula possesses an incompatibility system similar to that found in other Sterculiaceae species such as Theobroma cacao L. Such an incompatibility system allows a certain amount of selfing, and different individuals vary in their degree of self-incompatibility. The low success of crosses among close neighbours in one population suggests that there was spatial structure for incompatibility alleles in that population. This could partly explain the decline of the species in fragmented and disturbed habitats, since relatedness at incompatibility loci may increase in small or isolated population and thus reduce mate availability. Received: 2 March 1998 / Accepted: 3 August 1998  相似文献   

6.
We studied the floral and pollination biology of Amomum maximum. Our observations suggest that flexistyly is present in this species, and stigmatic behavior is similar as reported for Alpinia species. Two phenotypes occur in a ratio of 1:1 in natural populations. No fruit set occurred in the unpollinated bagged plants. Significant differences in seed set between selfing and crossing manipulations demonstrate that inbreeding depression or partial self-incompatibility is apparent in this species. Despite the resemblance in floral behavior, there are still some differences between the previous studies and ours: with special floral design, the body size of legitimate visitors ranged wider in Amomum maximum than in Alpinia species; the presence of anther appendage is suggested to prevent competing and delayed selfing. This is the first report of flexistyly in a wild cardamom species, which is the second largest group in ginger family (Zingiberaceae).  相似文献   

7.
MethodsStyle morph frequencies were sampled from 73 populations distributed across four flooding regimes differing in depth and duration. Measurements of flower size, sex-organ dimension, pollen size and pollen production were made in selected populations, and pollinator assemblages and their functional traits were recorded.ConclusionsThe similar morph structure and evenness of populations, regardless of flooding regime, suggest that sexual reproduction and clonal dispersal are sufficiently common to prevent the signature of founder events from dominating in a region. However, the pervasive occurrence of biased morph ratios in most populations suggests that many are in a non-equilibrium state. The reduced frequency of the mid-styled morph in trimorphic and dimorphic populations may be associated with the weak self-incompatibility of this morph resulting in selfing and inbreeding depression. Clonality in E. azurea and the weak self-incompatibility of the mid-styled morph may make it more vulnerable to geitonogamous selfing.  相似文献   

8.
The evolution of selfing from outcrossing ancestors is known to have occurred repeatedly in angiosperms. Theoretical studies have argued that the transition from outcrossing to selfing is accomplished more easily than the reverse case, and phylogenetic analyses involving self-compatible (SC) and self-incompatible (SI) species has basically supported this assumption. The evolutionary direction of self-compatibility and self-incompatibility was examined in Trillium camschatcense, which contains geographically widespread SC populations, and restricted SI populations. Ecological surveys have revealed that the SC populations were suitable for outcrossing, and selfing in these populations did not confer any fitness advantage. Since reproductive fitness indicates the possibility of an evolutionary shift from self-compatibility to self-incompatibility, the phylogenetic relationships of SI and SC populations of T. camschatcense were investigated based on cpDNA variations and nuclear DNA microsatellite polymorphisms. Although phylogenetic analyses did not provide credible evidence to determine evolutionary direction, the SI populations turned out to be monophyletic with extremely low genetic differentiation. Based on these results, we proposed two possible scenarios for the evolutionary backgrounds of SI and SC populations in T. camschatcense. The plausibility of each scenario was evaluated based on the reproductive and geographical features of the mating systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Theory predicts that homoploid hybrid speciation will be facilitated by selfing, yet most well-documented hybrid species are outcrossers. One possible explanation for this puzzle is that conditions in hybrid populations may favor selfing, even in otherwise outcrossing species. For example, in self-incompatible plants, mixtures of self and interspecific pollen often induce selfing. Here, we examine patterns of mating in three hybrid zones and four “pure” populations of Helianthus annuus and H. petiolaris, wild, self-incompatible sunflower species that are thought to have parented three homoploid hybrid species. Fourteen to 16 maternal families from each pure population and 44–46 maternal families from each hybrid zone were analyzed for seven polymorphic isozyme loci. Maximum-likelihood (ML) methods were used to estimate multilocus outcrossing rates (Tm) and hybridization frequencies for each maternal family, each phenotypic group within each hybrid zone (annuus-like, hybrid, and petiolaris-like), and each population. As predicted for self-incompatible species, all four parental populations have outcrossing rate ML estimates of 1.0. Within the hybrid zones, outcrossing rates were lowest in the H. annuus–like fraction of the population (0.73, 0.72, and 0.74 in the three hybrid zones, respectively), largely intermediate in the H. petiolaris–like group (0.94, 0.90, and 0.94), and highest in the hybrid group (0.97, 0.93, and 0.97). Although outcrossing rates are lower in hybrid zones than in pure populations, it is unlikely that the observed decrease facilitates hybrid speciation because outcrossing rates in the critical hybrid fraction of the population do not differ significantly from 1.0. Dividing the outcrossed pollen pool into intraspecific and interspecific components revealed that maternal plants are largely fertilized by conspecific pollen, confirming an important role for pollen competition as a reproductive barrier. Highly sterile hybrid plants do not appear to discriminate between parental species pollen, but hybrids with higher fertility tend to be fertilized by pollen from the parental group they resemble genetically. Thus, gametic selection leads to substantial assortative mating in these hybrid zones.  相似文献   

10.
In some self-compatible species, self pollen tubes grow more slowly than outcross pollen, presumably leading to low selfing rates when mixtures of self and outcross pollen reach the stigma simultaneously. Here we show that the competitive ability of self pollen differed among individuals of Hibiscus moscheutos. Self pollen tubes grew slower than outcross pollen in three plants, faster than outcross pollen in four plants, and showed no difference in five other plants (based on rates of callose plug formation). Levels of inbreeding depression were examined by comparing progeny from self and outcross pollinations in seven maternal families. Self pollination led to reduced seed number in only one maternal family, and a slight decrease in seed size was seen in two maternal families. Considerable inbreeding depression occurred later in the life cycle, and the degree of inbreeding depression varied among maternal families of 6-week-old plants. Our results demonstrate the potential for unpredictable effects of pollen competition on individual selfing rates, which in turn may affect progeny vigor. This complex situation contrasts with previous reports of species in which outcross pollen consistently outcompetes self pollen (cryptic self-incompatibility).  相似文献   

11.
We reconstructed the phylogenetic history of Pontederiaceae using chloroplast DNA restriction-site variation from approximately two-thirds of the species in this family of aquatic monocotyledons. The molecular phylogeny was used to evaluate hypotheses concerning the evolution of reproductive characters associated with the breeding system. The family has four main genera, two of which (Eichhornia and Pontederia) have tristylous, predominantly outcrossing species, while two (Monochoria and Heteranthera) have enantiostylous taxa. Self-incompatibility is restricted to some but not all tristylous species. In Eichhornia and Pontederia, predominantly selfing species with small monomorphic flowers (homostyly) have been hypothesized to result from the multiple breakdown of tristyly. Restriction-site variation provided a well supported phylogeny of ingroup taxa, enabling the mapping of reproductive characters onto trees. Two contrasting optimization schemes were assessed, differing in the relative weights assigned to shifts in character states. The reconstructed sequence of floral character-state change was used to assess competing hypotheses concerning the origin and breakdown of tristyly, and the relationships between tristylous and enantiostylous syndromes. Our results indicate that the class of optimization scheme used was the most critical factor in reconstructing character evolution. Despite some topological uncertainties and difficulty in reconstructing the primitive floral form in the family, several broad conclusions were possible when an unordered, unequally-weighted optimization scheme was used: (1) tristyly originated either once or twice, while the occurrence of enantiostyly in Monochoria and Heteranthera was always found to have independent origins; (2) tristyly has repeatedly broken down leading to selfing, homostylous taxa; and (3) self-incompatibility probably arose after the origin of floral trimorphism, a sequence of events that conflicts with some evolutionary models.  相似文献   

12.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

13.
Restriction site variation in chloroplast DNAs (cpDNAs) of Coreopsis section Coreopsis was employed to assess divergence and phylogenetic relationships among the nine species of the section. A total of fourteen restriction site mutations and one length mutation was detected. Cladistic analysis of the cpDNA data produced a phylogeny that is different in several respects from previous hypotheses. CpDNA mutations divide the section into two groups, with the two perennial species C. auriculata and C. pubescens lacking any derived restriction site changes. The other seven species are united by five synapomorphic restriction site mutations and the one length mutation. These seven species fall into three unresolved clades consisting of 1) the remaining three perennial species, C. grandiflora, C. intermedia, and C. lanceolata; 2) three annual species, C. basalis, C. nuecensoides, and C. nuecensis; and 3) the remaining annual, C. wrightii. The cpDNA data suggest that, although the perennial habit is primitive within the section, the annual species of section Coreopsis have likely not originated from an extant perennial species. The estimated proportion of nucleotide differences per site (given as 100p) for the cpDNAs of species in the section ranges from 0.00 to 0.20, which is comparable to or lower than values reported for other congeneric species. The low level of cpDNA divergence is concordant with other data, including cross compatibility, interfertility and allozymes, in suggesting that species of the section are not highly divergent genetically.  相似文献   

14.
Ovule fertilization and seed set were investigated inCrocus thomasii andCrocus vernus subsp.vernus, after different matings. The results gave evidence for a strict ovarian barrier inC. thomasii, which prevents self-fertilization either in self- or mixed- and double-pollination. InC. vernus the ovarian barrier to selfing is not so effective, but a further incompatibility reaction is expressed after self-fertilization resulting in a complete failure of embryogenesis. The implications of the present observations in respect to the mechanisms of pregamic- and postgamic rejection, indicate that a gametophytic system of self-incompatibility controls the ovule fertilization, and a not yet defined system of self-incompatibility controls embryogenesis.  相似文献   

15.
The relative success of fruit from paired self- and cross-pollinations was examined in Phormium tenax when the contrasted pollinations were separated by different distances on the same and different inflorescences. We determined whether the retention of selfed fruits differed from that of crossed fruits and whether it depended on the level of competition with crossed fruit, the number of seeds per fruit, and/or the presence of earlier developing fruit. We found that the success of selfed fruits is determined by the degree of competition with crossed fruits and may be an expression of self-incompatibility. Competition-dependence of the abscission of selfed flowers has not been documented previously. It is parallel to cryptic self-incompatibility in which individual self-pollen grains are not as successful as cross-pollen when competing on the same pistil. The competition-dependent abscission of self-pollinations considered here, however, operates at the level of whole flowers. The phenomenon of competition-dependent abscission of selfed flowers in P. tenax also has implications for the measurement and interpretation of self-incompatibility in other species. Self-incompatibility is a quantitative phenomenon. The facultative success of selfing shows that the effective strength of self-incompatibility can be highly susceptible to the conditions of competition under which it is measured. The competition-dependent abscission of selfed flowers allows a high level of outcrossing to be achieved while it assures seed set when pollinations are scarce. Several other causes of intermediate selfing frequencies can also be explained by this “best-of-both-worlds” hypothesis.  相似文献   

16.
The reproductive biology of six native Tillandsia species that co-occurred in woody areas of Santa Fe Province (Argentina) was studied for floral biology, breeding systems and reproductive success. Flower longevity, floral phases, hand self- and cross-pollinations or natural pollinations and fluorescence microscopy observations of post-pollination events were analysed. Also pollen/ovule (P/O) ratio and pre-emergent reproductive success (PERS) were compared between species. In T. aëranthos, T. ixioides and T. meridionalis, self-pollinated flowers mostly failed to form fruits, and fluorescence microscopy studies showed that in selfed pistils pollen tube growth was arrested in the style. It is likely that these species have homomorphic, gametophytic self-incompatibility. In contrast, T. capillaris, T. tricholepis and T. recurvata regularly formed fruits following autonomous self-pollination. Floral traits, the P/O ratios and PERS indices correlate with the breeding systems found in these two groups of species: the three selfing species have inconspicuous closed flowers, and they have low P/O ratios and high PERS values. In contrast, the three self-incompatible (SI) species have conspicuous flowers with relatively high P/O and low PERS values. We described here three new cases of SI in Tillandsia species subgenera Anoplophytum and confirm the autogamous and cleistogamous status in three species of Tillandsia subgenera Diaphoranthema.  相似文献   

17.
The evolution of selfing from outcrossing is a common transition, yet little is known about the mutations and selective factors that promote this shift. In the mustard family, single-locus self-incompatibility (SI) enforces outcrossing. In this study, we test whether mutations causing self-compatibility (SC) are linked to the self-incompatibility locus (S-locus) in Leavenworthia alabamica, a species where two selfing races (a2 and a4) co-occur with outcrossing populations. We also infer the ecological circumstances associated with origins of selfing using molecular sequence data. Genealogical reconstruction of the Lal2 locus, the putative ortholog of the SRK locus, showed that both selfing races are fixed for one of two different S-linked Lal2 sequences, whereas outcrossing populations harbor many S-alleles. Hybrid crosses demonstrated that S-linked mutations cause SC in each selfing race. These results strongly suggest two origins of selfing in this species, a result supported by population admixture analysis of 16 microsatellite loci and by a population tree built from eight nuclear loci. One selfing race (a4) shows signs of a severe population bottleneck, suggesting that reproductive assurance might have caused the evolution of selfing in this case. In contrast, the population size of race a2 cannot be distinguished from that of outcrossing populations after correcting for differences in selfing rates. Coalescent-based analyses suggest a relatively old origin of selfing in the a4 race (~150 ka ago), whereas selfing evolved recently in the a2 race (~12-48 ka ago). These results imply that S-locus mutations have triggered two recent shifts to selfing in L. alabamica, but that these transitions are not always associated with a severe population bottleneck, suggesting that factors other than reproductive assurance may play a role in its evolution.  相似文献   

18.
19.
Summary Multi-locus self-incompatibility systems offer few obvious adaptive advantages to the species possessing them. However, the gametophytic system's independent gene action allows the separate genes in a two gene system to behave as if they were individually not involved in a systematic disruption of panmixia. Under such circumstances, fixation of one of the two genes is readily obtained if an allele possesses a selective advantage. The resulting single gene system (the classic Nicotiana system) is then resistant to disruption, except by genes which allow selfing, which rapidly reach fixation.  相似文献   

20.
The 480 species of leafy spurges, Euphorbia subgenus Esula, represent the main temperate radiation in the large genus Euphorbia. This group is distributed primarily in temperate Eurasia, but with smaller, disjunct centres of diversity in the mountains of the Old World tropics, in temperate southern Africa and in the New World. The majority of New World diversity (32 species) occurs in a single section, section Tithymalus. We analysed sequences of the nrITS and plastid ndhF, trnH‐psbA, trnS‐trnG and trnD‐trnT regions to reconstruct the phylogeny of section Tithymalus and to examine the origins and diversification of the species native to the New World. Our results indicate that the New World species of section Tithymalus form a clade that is sister to the widespread, weedy E. peplus. The New World species fall into two primary groups: a ‘northern annual clade’ from eastern North America and a diverse clade of both annual and perennial species that is divided into three subgroups. Within the second group, there is a small ‘southern annual clade’ from Texas and northern Mexico, a perennial ‘Brachycera clade’ from the western United States and northern Mexico, and a perennial ‘Esuliformis clade’ from montane areas of Mexico, Guatemala, Honduras and the Caribbean island of Hispaniola. Ancestral state reconstructions indicate that the annual habit probably evolved in the ancestor of E. peplus and the New World clade, with a subsequent reversal to the perennial habit. In conjunction with this phylogenetic framework, the New World species of section Tithymalus are comprehensively reviewed. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 191–228.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号