首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
McCall AC  Karban R 《Oecologia》2006,146(4):566-571
Plants protect themselves against herbivory using a continuum of strategies, ranging from constitutive defenses to intermittent induced responses. Induced defenses may not provide immediate and maximum protection, but could be advantageous when continuous defense is either energetically or ecologically costly. As such, induced defenses in flowers could help defend relatively valuable tissue while keeping reproductive structures accessible and attractive to pollinators. Thus far, no one has demonstrated the efficacy of induced defenses against floral herbivores (florivores) in the field. Here we show that mechanical leaf damage in wild tobacco, Nicotiana attenuata (Solanaceae), reduced both flower and fruit herbivory in the field and that exogenous application of methyl jasmonate, a potent elicitor of induced responses, reduced both leaf and floral damage in natural populations. This result is consistent with a survey of damage in the field, which showed a negative relationship between leaf damage and flower and fruit damage. Although optimal defense theory predicts that induced defenses should be rare in reproductive tissues, owing to their high fitness value, our results suggest otherwise. Induced defenses in leaves and reproductive tissues may allow plants to respond effectively to the concomitant pressures of defending against herbivory and attracting pollinators.  相似文献   

2.
Costs and benefits of jasmonic acid induced responses in soybean   总被引:1,自引:0,他引:1  
In response to herbivory, plants have evolved defense strategies to reduce herbivore preference and performance. A strategy whereby defenses are induced only upon herbivory can mitigate costs of defense when herbivores are scarce. Although costs and benefits of induced responses are generally assumed, empirical evidence for many species is lacking. Soybean (Glycine max L. Merr.) has emerged as a model species with which to address questions about induced responses. To our knowledge, this is the first study to examine the fitness costs and benefits of jasmonic acid-induced responses by soybean in the absence and presence of soybean loopers (Chrysodeix includens Walker) (Lepidoptera: Noctuidae). In a greenhouse experiment we demonstrated that soybean induction was costly. Induced plants produced 10.1% fewer seeds that were 9.0% lighter, and had 19.2% lower germination rates than noninduced plants. However, induction provided only modest benefits to soybeans. In a choice experiment, soybean loopers significantly preferred leaves from noninduced plants, consuming 62% more tissue than from induced plants. Soybean loopers that fed on plants that were previously subjected to treatment with jasmonic acid matured at the same rate and to the same size as those that fed on control plants. However, at high conspecific density, soybean looper survivorship was reduced by 44% on previously induced relative to control plants. Reduced soybean looper preference and survivorship did not translate into fitness benefits for soybeans. Our findings support theoretical predictions of costly induced defenses and highlight the importance of considering the environmental context in studies of plant defense.  相似文献   

3.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

4.
After local herbivory, plants can activate defense traits both at the damaged site and in undamaged plant parts such as in connected ramets of clonal plants. Since defense induction has costs, a mismatch in time and space between defense activation and herbivore feeding might result in negative consequences for plant fitness. A short time lag between attack and defense activation is important to ensure efficient protection of the plant. Additionally, the duration of induced defense production once the attack has stopped is also relevant in assessing the cost–benefit balance of inducible defenses, which will depend on the absence or presence of subsequent attacks. In this study we quantified the timing of induced responses in ramet networks of the stoloniferous herb Trifolium repens after local damage by Mamestra brassicae larvae. We studied the activation time of systemic defense induction in undamaged ramets and the decay time of the response after local attack. Undamaged ramets became defense‐induced 38–51 h after the initial attack. Defense induction was measured as a reduction in leaf palatability. Defense induction lasted at least 28 days, and there was strong genotypic variation in the duration of this response. Ramets formed after the initial attack were also defense‐induced, implying that induced defense can extend to new ramet generations, thereby contributing to protection of plant tissue that is both very vulnerable to herbivores and most valuable in terms of future plant growth and fitness.  相似文献   

5.
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block‐design in a pine‐bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry (Vaccinium myrtillus) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA‐treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf‐chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.  相似文献   

6.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

7.
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress.  相似文献   

8.
Inducible plant defenses—those produced in response to herbivore feeding—are thought to have evolved as a cost-saving tactic that allows plants to enact defenses only when needed. The costs of defense can be significant, and loss of plant fitness due to commitment of resources to induced defenses could affect plant populations and play a role in determining the success or failure of weed biocontrol. We used methyl jasmonate (MeJA) to experimentally induce defenses without herbivores in invasive houndstongue plants (Cynoglossum officinale L.) in the field and measured resulting growth and fitness (plant size, seed number, and seed weight). MeJA-treated plants emitted large amounts of plant volatiles and produced leaves with twice as many trichomes as untreated plants. Plants with activated defenses had fewer leaves, were smaller, and produced nutlets that weighed less than plants not investing in defenses. These data indicate that herbivore-induced defenses are costly for houndstongue plants in their invaded range and represent significant indirect costs of herbivory beyond direct feeding damage (e.g., loss of photosynthetic tissue). Notably, the magnitude of defenses elicited upon feeding varies greatly by herbivore species and a better understanding of the costs of defense could help us predict which potential biocontrol herbivores are most likely to be effective.  相似文献   

9.
The response of Chamaenerion angustifolium (fireweed) plants to different patterns of artificial leaf and flower herbivory was examined to determine if the effects of localized herbivory were confined within vertical sectors of the plant. The effect of leaf and flower removal on fruit development was compared for removals within sectors and distributed among sectors. Fruit development did not differ in plants subjected to different patterns of leaf and flower removal. These results suggest that in disturbed plants carbohydrate movement is not confined within vertical sectors.  相似文献   

10.
Díaz M  Pulido FJ  Møller AP 《Oecologia》2004,139(2):224-234
Plants are able to compensate for loss of tissue due to herbivores at a variety of spatial and temporal scales, masking detrimental effects of herbivory on plant fitness at these scales. The stressing effect of herbivory could also produce instability in the development of plant modules, and measures of such instability may reflect the fitness consequences of herbivory if instability is related to components of plant fitness. We analyse the relationships between herbivory, developmental instability and production of female flowers and fruits of holm oak Quercus ilex trees by means of herbivore removal experiments. Removal of leaf herbivores reduced herbivory rates at the tree level, but had no effect on mean production of female flowers or mature fruits, whereas herbivory tended to enhance flower production and had no effect on fruit abortion at the shoot level. Differences in herbivory levels between shoots of the same branch did not affect the size and fluctuating asymmetry of intact leaves. These results indicate compensation for herbivory at the tree level and over-compensation at the shoot level in terms of allocation of resources to female flower production. Removal of insect herbivores produced an increase in the mean developmental instability of leaves at the tree level in the year following the insecticide treatment, and there was a direct relationship between herbivory rates in the current year and leaf fluctuating asymmetry the following year irrespective of herbivore removal treatment. Finally, the production of pistillate flowers and fruits by trees was inversely related to the mean fluctuating asymmetry of leaves growing the same year. Leaf fluctuating asymmetry was thus an estimator of the stressing effects of herbivory on adult trees, an effect that was delayed to the following year. As leaf fluctuating asymmetry was also related to tree fecundity, asymmetry levels provided a sensitive measure of plant performance under conditions of compensatory responses to herbivory.  相似文献   

11.
Plant defense theory suggests that inducible resistance has evolved to reduce the costs of constitutive defense expression. To assess the functional and potentially adaptive value of induced resistance it is necessary to quantify the costs and benefits associated with this plastic response. The ecological and evolutionary viability of induced defenses ultimately depends on the long-term balance between advantageous and disadvantageous consequences of defense induction. Stoloniferous plants can use their inter-ramet connections to share resources and signals and to systemically activate defense expression after local herbivory. This network-specific early-warning system may confer clonal plants with potentially high benefits. However, systemic defense induction can also be costly if local herbivory is not followed by a subsequent attack on connected ramets. We found significant costs and benefits of systemic induced resistance by comparing growth and performance of induced and control plants of the stoloniferous herb Trifolium repens in the presence and absence of herbivores.  相似文献   

12.
Invasive plants generally escape from specialist herbivores of their native ranges but may experience serious damage from generalists. As a result, invasive plants may evolve increased resistance to generalists and tolerance to damage. To test these hypotheses, we carried out a common garden experiment comparing 15 invasive populations with 13 native populations of Chromolaena odorata, including putative source populations identified with molecular methods and binary choice feeding experiments using three generalist herbivores. Plants from invasive populations of C. odorata had both higher resistance to three generalists and higher tolerance to simulated herbivory (shoot removal) than plants from native populations. The higher resistance of plants from invasive populations was associated with higher leaf C content and densities of leaf trichomes and glandular scales, and lower leaf N and water contents. Growth costs were detected for tolerance but not for resistance, and plants from invasive populations of C. odorata showed lower growth costs of tolerance. Our results suggest that invasive plants may evolve to increase both resistance to generalists and tolerance to damage in introduced ranges, especially when the defense traits have low or no fitness costs. Greater defenses in invasive populations may facilitate invasion by C. odorata by reducing generalist impacts and increasing compensatory growth after damage has occurred.  相似文献   

13.
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant’s environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.  相似文献   

14.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

15.
Optimality theory for plant defense against herbivores predicts an evolutionary tradeoff between the abilities to compete and defend. We tested this hypothesis by studying the effects of genetic variation in competitiveness on defense expression. Two closely related and differentially competitive congeners were compared for levels of resistance, tolerance, and secondary metabolite production. In a growth room experiment, plants of Arabis drummondii and A. holboellii were grown in the presence and absence of the common bunch grass Boutelloua gracilis, the specialist herbivore Plutella xylostella, and generalist herbivore Trichoplusia ni. Tolerance to competition, measured as growth next to the grass relative to controls in the absence of grass, was greatest for A. drummondii, the species that occurred in communities with higher densities of inter-specific neighbors. Measures of defense (resistance to herbivores, tolerance to damage, and concentrations of glucosinolates) varied inconsistently between the Arabis, species, depending on type of herbivore, competition level, and type of defense. The better competitor A. drummondii was more resistant to specialist herbivores, as in the field, and exhibited greater herbivore- and competition-induced changes in glucosinolate profiles. Further, when plants of A. drummondii were fed upon in competitive environments, the induced glucosinolate response was reduced while tolerance levels increased in an apparent switching of induced strategies. We suggest that competitiveness and defense responses are sometimes positively correlated because some defensive traits also function as competitive traits. A competitive function for defenses may also explain why defenses were affected by competition. Alternatively, since the induced response did not increase estimates of total glucosinolate content significantly, minimal defense costs might also allow the simultaneous evolution of competitiveness and defense. Finally, when faced with both herbivory and competition, some competitive species, such as A. drummondii, may switch to growth-based rather than toxin-based strategies as recent theoretical models predict.  相似文献   

16.
Plant responses to herbivory include tolerance (i.e. compensatory growth) and defense. Several factors influence the tolerance of a plant following herbivory, including plant genetic identity, site nutrient availability, and previous and/or concurrent herbivory. We studied the effects of these factors on the compensatory response of Salix planifolia ssp. planifolia, a shrub species common in the boreal and subarctic regions of North America. We cloned several genets of S. planifolia and submitted them to simulated root and/or leaf herbivory while varying the nutrient availability. Simulated leaf herbivory was more detrimental to the plant than simulated root herbivory, reducing both above- and below-ground tissue production. Leaf demography was unaffected by either simulated herbivory treatment. There was some compensatory growth following simulated leaf and root herbivory, but only the root compartment responded to increased nutrient availability. Simulated leaf herbivory increased leaf transpiration and reduced stomatal resistance, suggesting increased carbon fixation. The unexpected finding of the experiment was the absence of interactions among factors (genotype, nutrient availability and type of tissue damage) on the compensatory response of S. planifolia. These factors thus have additive effects on the species' compensatory ability.  相似文献   

17.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

18.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

19.
《Acta Oecologica》2007,31(2):210-215
Nicotine is both a constitutive and induced defense in cultivated tobacco (Nicotiana tabacum). Nicotine is thought primarily to defend against above-ground herbivory; however, below-ground herbivores like the nematode Meloidogyne incognita can also damage plants. We evaluated the costs and benefits of constitutive nicotine production in four near-isogenic lines of N. tabacum differing in nicotine content. We exposed the four lines to levels of nematode infection below that found to induce nicotine synthesis, and measured nematode density and each line's response to nematode presence. Nematode density did not differ among lines and was not related to leaf nicotine content in any of the lines, suggesting that constitutive nicotine content did not affect nematode survival or reproduction. Most measures of plant performance were unaffected by nematodes; however, nematode infection decreased flowering in the high nicotine line relative to the other lines. Lines with less constitutive nicotine did not incur similar costs, suggesting a tradeoff between nicotine production and tolerance of low levels of herbivory. A cost of nicotine production is also suggested by the fact that flowering was inversely correlated with leaf nicotine content in all four lines. Although nicotine conferred no resistance to nematodes, high nicotine content reduced the plant's tolerance of low levels of nematode infection and was correlated with reduced flowering. In examining the costs and benefits of a constitutive plant defense, this work complements and extends previous research addressing the relationship between plant tolerance and induced defenses.  相似文献   

20.
We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (−23.7%), leaf production (−51.8%), and reproduction (−24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant–plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in myrmecophytic plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. P. de U. Barbosa, L. Diniz, Y. Oki and F. Pezzini contributed equally to this work and are listed in alphabetical order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号