首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Abstract. We compared the plant species composition, productivity and canopy structure of seven mown sites to a chronosequence of 20 abandoned calcareous fens in northeastern Switzerland. Cessation of mowing led to an 18% decline in overall plant species richness and the diversity of most functional groups. Abandonment did not lead to marked increases of above‐ground productivity, but rather selectively favoured certain functional groups. On abandoned fens biomass of grasses increased nearly threefold, at the expense of biomass of Cyperaceae and Juncaceae, which declined by 30% compared to mown fens, while forb biomass remained unaffected. Litter mass increased more than 15‐fold in fallows, while canopy height increased by 50%. The foliage in abandoned fens was oriented more horizontally and had a lower overall cover. However, these successional changes were never dependent upon the age of the fallow. Furthermore, nearly all traits differed significantly on regional and local spatial scales, suggesting that floristic and (meso‐)climatic differences obscure or override successional trajectories in these species‐rich wetlands.  相似文献   

2.
    
Abstract. We studied the effects of abandonment on two common fen plant species. In mown and a chronosequence of abandoned fen meadows spanning 35 yr, we measured fitness traits of the sedge Carex davalliana and the forb Succisa pratensis. Cessation of mowing had little effect on fitness traits and seed production of C. davalliana, but seedling density decreased more than threefold. Population density of S. pratensis decreased with increasing community biomass, but was not affected by the cessation of mowing. However, flowering frequency increased threefold and seed production was 20% higher in fallow meadows. Consequently, seedling density of S. pratensis increased nearly threefold after abandonment. However, these changes were not dependent on the age of the fallow. In a common garden and germination experiment, we found no differences in either species between plants from fallows and mown fen meadows, except for the height of the flowering stalk of S. pratensis. The combined results from the common garden experiment and the field studies indicate that changes in fitness traits observed in fallows were mostly phenotypic and likely to be reversible. If other species react in similar ways, there is a high potential for re‐establishing traditional fen meadow communities from fallows by mowing.  相似文献   

3.
    
Abstract. The woody and shrubby riparian vegetation of the Mediterranean Region of Spain shows a progressive displacement from the Querco-Fagetea, typical of Central Europe, towards the Nerio-Tamaricetea, which has its maximum expression in North Africa. We studied the occurrence of 107 riparian plant communities on 52 locations in the Segura River Basin (SE Spain) and their presumed relation to variation in rainfall and temperature. On the basis of agglomerative clustering and Redundancy Analysis (RDA) three riparian vegetation complexes were identified and characterized by (a) Central European-related temperate communities, (b) predominantly North African riparian communities and (c) a combination of both community types, respectively. North African communities predominated in the lower stretches of the Segura Basin, probably due to the prevailing semi-arid bioclimate.  相似文献   

4.
Abstract. Influences of neighbouring plants on seedling establishment of six dicotyledonous species was investigated in a nutrient-poor limestone grassland (Mesobrometum) in northern Switzerland. Microsites with different vegetational structure were created and seeds sown in them. The fate of emerging seedlings was followed for one or two years. A plant surviving its first growing season was regarded as established. Shelter by neighbouring plants appeared to be necessary for the establishment of Arabis hirsuta and Primula veris. Because of drought and frost heave, hardly any seedlings of these species established in gaps (4 - 21 %). In microsites with vegetation, their survival was significantly higher (40–57 %). Neighbouring plants slightly reduced the survival of Plantago lanceolata and Sanguisorba minor, but these species established well both in gaps (74 - 81 %) and in vegetated microsites (54 - 67 %). Medicago lupulina established well in all microsites in one year (71 - 79 %), but poorly in the next year (18–32 %). Linum catharticum emerged poorly in one year and was completely extinguished by a fungal pathogen the following year. The overall conclusion is, that gaps are of minor importance for recruitment of these species in this grassland. Physical hazards and pathogens control seedling establishment to a greater extent than competition by neighbouring plants. Some species are hardly able to establish without shelter of vegetation. Seed size is an important factor for success of establishment, especially in gaps. It is suggested, that the relatively low productivity and the absence of litter accumulation (due to mowing and biomass removal) are important conditions for the observed behaviour of the seedlings and juvenile plants in this community.  相似文献   

5.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species.  相似文献   

6.
    
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources.  相似文献   

7.
GLM versus CCA spatial modeling of plant species distribution   总被引:16,自引:0,他引:16  
Guisan  Antoine  Weiss  Stuart B.  Weiss  Andrew D. 《Plant Ecology》1999,143(1):107-122
Despite the variety of statistical methods available for static modeling of plant distribution, few studies directly compare methods on a common data set. In this paper, the predictive power of Generalized Linear Models (GLM) versus Canonical Correspondence Analysis (CCA) models of plant distribution in the Spring Mountains of Nevada, USA, are compared. Results show that GLM models give better predictions than CCA models because a species-specific subset of explanatory variables can be selected in GLM, while in CCA, all species are modeled using the same set of composite environmental variables (axes). Although both techniques can be readily ported to a Geographical Information System (GIS), CCA models are more readily implemented for many species at once. Predictions from both techniques rank the species models in the same order of quality; i.e. a species whose distribution is well modeled by GLM is also well modeled by CCA and vice-versa. In both cases, species for which model predictions have the poorest accuracy are either disturbance or fire related, or species for which too few observations were available to calibrate and evaluate the model. Each technique has its advantages and drawbacks. In general GLM will provide better species specific-models, but CCA will provide a broader overview of multiple species, diversity, and plant communities.  相似文献   

8.
    
Questions: To what extent are the distributions of tropical rain forest tree ferns (Cyatheaceae) related to environmental variation, and is habitat specialization likely to play a role in their local coexistence? Location: Lowland rain forest at La Selva Biological Station, Costa Rica. Methods: Generalized linear (GLM) and generalized additive (GAM) logistic regression were used to model the incidence of four tree fern species in relation to environmental and neighbourhood variables in 1154 inventory plots regularly distributed across 6 km2 of old‐growth forest. Small and large size classes of the two most abundant species were modelled separately to see whether habitat associations change with ontogeny. Results: GLM and GAM model results were similar. All species had significant distributional biases with respect to micro‐habitat. Environmental variables describing soil variation were included in the models most often, followed by topographic and forest structural variables. The distributions of small individuals were more strongly related to environmental variation than those of larger individuals. Significant neighbourhood effects (spatial autocorrelation in intraspecific distributions and non‐random overlaps in the distributions of certain species pairs) were also identified. Overlaps between congeners did not differ from random, but there was a highly significant overlap in the distributions of the two most common species. Conclusions: Our results support the view that habitat specialization is an important determinant of where on the rain forest landscape tree ferns grow, especially for juvenile plants. However, other factors, such as dispersal limitation, may also contribute to their local coexistence.  相似文献   

9.
    
Abstract. The wet to moist bryophyte‐dominated vegetation of Sassendalen, Svalbard, was classified into seven communities. These communities were grouped into (1) Cardamino nymanii‐Saxifragion foliolosae marsh; (2) Caricion stantis fen; (3) Luzulion nivalis snowbed – including manured vegetation corresponding to moss tundras. All communities have a basically arctic distribution. Marshes are developed in habitats with a water table above the bryophyte vegetation surface and fens on sites with a water table level high above the permafrost but below the bryophyte surface. Moss tundras normally have no standing water table, but in Sassendalen they have a low water table due to their development on less steep slopes than in their normal habitat near bird cliffs. CCA confirms that the standing water level is the prime differentiating factor between the alliances, while aspect favourability and permafrost depth differentiate between the fen communities and temporary desiccation is important for the Catoscopium nigritum community. Carex subspathacea is a characteristic fen species in the absence of other Carex species dominating elsewhere in the Arctic. Arctic marshes are linked to an extremely cold environment. They have a very low species diversity with a few species dominating; Arctophila fulva, Pseudocalliergon trifarium, Scorpidium scorpioides and Warnstorfia tundrae are character species. Moss tundra as defined here appears to be restricted to Svalbard and, probably, neighbouring Novaya Zemlya. This may be due to the absence of rodents and the high seabird density, which is related to the mild sea currents reaching further to the north here and which implies manuring of surrounding ecosystems. Manuring in a very cold environment produces moss carpets with a thin active layer and accumulation of thick peat layers without a standing water level. In Sassendalen the role of arctic seabirds is replaced by Svalbard reindeer which are nonmigratory and are concentrated to favourable grazing areas where their manuring effect is intense. Their long‐term manuring effect probably explains the occurrence of moss tundras in this weakly rolling landscape where seabird colonies are absent.  相似文献   

10.
    
Abstract. At the western border of its geographical range, Silene nutans (Caryophyllaceae) has evolved two groups of parapatric populations showing distinct allozyme patterns and apparently occurring on different bedrock types. This study tests the hypothesis that these groups represent edaphic ecotypes. With this in view, the ecological amplitude of 36 populations of Silene nutans from Belgium was investigated and their synecology specified using vegetation composition and soil parameters; Ellenberg indicator values were used for ecological interpretation of the vegetation analyses. The results provide evidence that allozyme and habitat variations are correlated, the two groups occurring on contrasting soil with distinct vegetation types. One group is restricted to alkaline soils and typically occurs in open calcareous grasslands, fringes and scrub. The other group is characterized by wider autecological and synecological ranges with a bimodal pH- distribution, occurring on two kinds of siliceous soils: (1) neutral soils, supporting vegetation with a high species richness comprising many mesophilous species, and (2) CaCO3 -free bedrocks characterized by acidophilous, species-poor, open dry grasslands and woodlands. It also appears that factors not related to soil chemistry, such as microclimate, are involved in the ecological specialization of the two ecotypes. It is argued that these ecotypes exemplify adaptive radiation and parapatric speciation at the margin of a species distribution area.  相似文献   

11.
    
Abstract. We compared the diversity, phytogeography, and plant communities in two mid-latitude alpine tundras with comparable aerial and elevational extents: Changbaishan Summit in eastern Asia and Indian Peaks in western North America. Despite wide separation, the two areas shared 72 species. In all, 43% of the species on Changbaishan Summit are also distributed in the alpine zones of western North America, while 22% of the species on Indian Peaks are also distributed in the alpine zones of eastern Asia. Almost all the shared species also occur in the Beringian region. Phytogeographical profiles of species and genera showed that 69% of species and over 90% of genera in both alpine tundras belong to the three phytogeographical categories: cosmopolitan, circumpolar, and Asian-North American. We attributed the current floristic relationship between these widely separated areas to the periodic past land connection between the two continents during the Tertiary and Pleistocene. Indian Peaks has a closer floristic relationship with the Arctic tundra than does Changbaishan Summit. Indian Peaks also has 45% higher species richness and lower vegetation cover than Changbaishan Summit. Plant communities from the two areas were completely separated in the two-way indicator species analysis and non-metric multidimensional scaling on floristic data at both species and generic levels, whereas ordination of communities by soil data produced a greater overlap. The plant communities on Changbaishan Summit in general have lower alpha diversity, higher beta diversity (lower between-community floristic similarity), and more rare species than does Indian Peaks. Mosaic diversity does not differ in the two alpine tundras, although the analysis suggests that Changbaishan Summit communities are more widely spaced on gradients than the Indian Peaks communities.  相似文献   

12.
    
Abstract. In the former brown coal mining area of eastern Germany, now scheduled as a nature conservation area, an analysis of the spatial distribution of vegetation was considered as an important tool in landscape planning. Therefore a comprehensive vegetation survey by means of satellite imagery (Landsat-TM), airborne imagery (CASI), and ground-based methods, notably habitat mapping and vegetation sampling was carried out. With respect to the scales of resolution the classification results of the four methods are, to a certain degree, comparable. Differences in the outcome can be ascribed to the fact that methods of low resolution result in a discrete array of polygons whereas methods of high resolution depict a mosaic structure with an underlying, continuously changing gradient. Provided that the biological meaning of the remote sensing classification is known, a shift from single vegetation patterns to the landscape scale will be possible. Neither satellite nor airborne imagery is restricted to the purpose of mapping but may also serve for vegetation classification itself.  相似文献   

13.
    
Abstract. Australian alpine vegetation is confined to the southeast of the continent and the island of Tasmania. It exhibits strong geographic patterns of floristic variation. These patterns have been attributed to variation in edaphic conditions resulting from geographic variation in substrate, climate and glacial history. This edaphic hypothesis is tested using floristic and environmental data from 166 quadrats distributed throughout the floristic and geographic range of Australian alpine vegetation. Environmental vector fitting in three-dimensional ordination space, the number of significant environmental differences between all pairs of 17 floristic groups and overall statistical analyses of the environmental differences between communities suggest a primacy of climatic variables over edaphic variables in explaining the broad patterns of floristic variation. Continentality, summer warmth, summer rainfall and winter cold all provide a better statistical explanation of floristic variation than the most explanatory of the edaphic variables, extractable P. The environmental variables that best discriminate the groups at each dichotomy of the divisive classification of the floristic data are largely climatic at the upper two levels, with edaphic, topographic and biotic variables being generally more important than climatic variables at the lower levels. Many of the edaphic variables that were most important in discriminating dichotomous groups were relatively insignificant in the broader analyses, suggesting that it is important to partition large data sets for environment/floristic analyses. The results of such partitioning show that the environmental factors most important in influencing floristic variation in alpine vegetation in Australia vary by location and geographic scale.  相似文献   

14.
    
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

15.
    
Abstract. The use of Generalized Linear Models (GLM) in vegetation analysis has been advocated to accommodate complex species response curves. This paper investigates the potential advantages of using classification and regression trees (CART), a recursive partitioning method that is free of distributional assumptions. We used multiple logistic regression (a form of GLM) and CART to predict the distribution of three major oak species in California. We compared two types of model: polynomial logistic regression models optimized to account for non‐linearity and factor interactions, and simple CART‐models. Each type of model was developed using learning data sets of 2085 and 410 sample cases, and assessed on test sets containing 2016 and 3691 cases respectively. The responses of the three species to environmental gradients were varied and often non‐homogeneous or context dependent. We tested the methods for predictive accuracy: CART‐models performed significantly better than our polynomial logistic regression models in four of the six cases considered, and as well in the two remaining cases. CART also showed a superior ability to detect factor interactions. Insight gained from CART‐models then helped develop improved parametric models. Although the probabilistic form of logistic regression results is more adapted to test theories about species responses to environmental gradients, we found that CART‐models are intuitive, easy to develop and interpret, and constitute a valuable tool for modeling species distributions.  相似文献   

16.
    
Abstract. Composition and density of the soil seed banks, together with seedling emergence in the field, were examined on Svalbard. 1213 soil samples were collected from six drymesic habitats in three regions representing various stages of colonization from bare moraines to full vegetation cover and spanning a range of typical nutrient and thermal regimes. Of the 165 vascular plant species native to Svalbard, 72 were present as mature plants at the study sites and of these 70% germinated seed. Proglacial soil had 12 seedlings per m2, disturbed Dryas heath 131, intact Dryas heath 91, polar heath 715, thermophilic heath 3113, and a bird cliff 10437 seedlings. Highest seed bank species richness was at the thermophilic heath (26 species). Seedlings of 27 species emerged in the field, with fewer seedlings in disturbed habitats (60 seedlings per m2) than in intact Dryas heath (142), suggesting that an absence of ‘safe sites’ limited seedling establishment in disturbed habitats. Measurement of seedling emergence in the field increased awareness of which species are able to germinate naturally. This may be underestimated by up to 31% if greenhouse trials alone are used, owing partly to unsuitability of greenhouse conditions for germination of some species and also to practical limitations of amount of soil sampled. Most thermophilic species failed to germinate and some species present at several sites only germinated from the thermophilic heath seed bank, suggesting that climate constrains recruitment from seeds in the High Arctic.  相似文献   

17.
    
Abstract. Vegetation models based on multiple logistic regression are of growing interest in environmental studies and decision making. The relatively simple sigmoid Gaussian optimum curves are most common in current vegetation models, although several different other response shapes are known. However, improvements in the technical means for handling statistical data now facilitate fast and interactive calculation of alternative complex, more data-related, non-parametric models. The aim in this study was to determine whether, and if so how often, a complex response shape could be more adequate than a linear or quadratic one. Using the framework of Generalized Additive Models, both parametric (linear and quadratic) and non-parametric (smoothed) stepwise multiple logistic regression techniques were applied to a large data set on wetlands and water plants and to six environmental variables: pH, chloride, orthophosphate, inorganic nitrogen, thickness of the sapropelium layer and depth of the water-body. All models were tested for their goodness-of-fit and significance. Of all 156 generalized additive models calculated, 77 % were found to contain at least one smoothed predictor variable, i.e. an environmental variable with a response better fitted by a complex, non-parametric, than by a linear or quadratic parametric curve. Chloride was the variable with the highest incidence of smoothed responses (48 %). Generally, a smoothed curve was preferable in 23 % of all species-variable correlations calculated, compared to 25 % and 18 % for sigmoid and Gaussian shaped curves, respectively. Regression models of two plant species are presented in detail to illustrate the potential of smoothers to produce good fitting and biologically sound response models in comparison to linear and polynomial regression models. We found Generalized Additive Modelling a useful and practical technique for improving current regression-based vegetation models by allowing for alternative, complex response shapes.  相似文献   

18.
    
Abstract. Evidence is presented for the occurrence of alternative stable states in a wet calcareous dune slack on the Frisian island of Texel, The Netherlands. An early pioneer stage (0.5 kgm?2 total standing crop) and a more productive later successional stage (2.9 kg m?2) occur side by side, with sharp boundaries between them. The pioneer vegetation has been recorded at the site for more than 62 yr. These features indicate the occurrence of a positive‐feedback mechanism that has led to alternative stable states. Analyses of ground and surface water composition, and decalcification depths, indicated that hydrologically the study site can be characterized as a flow‐through slack, with exfiltration of calcareous groundwater on one side and infiltration of surface water on the other side of the slack. These differences in hydrological conditions have led to distinct differences in environmental conditions within the dune slack. The occurrence of the two successional stages can, however, not be explained by differences in hydrological conditions since both stages occur side by side in the centre of the dune slack. It is, therefore, more likely that biotic interactions are the cause of the vegetation pattern. Three possible mechanisms for feedback processes are discussed: (1) enhanced nitrogen loss; (2) sulfide toxicity and (3) nutrient accumulation in internal cycle.  相似文献   

19.
    
Abstract. We analysed the structure and diversity of the vegetation along an Arctic river to determine the relationship between species richness and plant community structure. We examined whether variation in species richness along the corridor is structured as (1) an increase in the number of communities due to increasing landscape heterogeneity, (2) an increase in the floristic distinctiveness (β-diversity) of communities, or (3) an increase in within-community richness (α-diversity) as species-poor communities are replaced by species-rich communities. We described 24 community types and analysed the relationship between site vascular species richness (γ-diversity) and β-diversity, α-diversity, site environmental heterogeneity, and the number of distinct plant communities. We also measured diversity patterns of vascular, bryophyte, and lichen species within communities and examined their relationship to community-level estimates of environmental factors. We found that an increase in site species richness correlated with an increase in the number of communities (r2= 0.323, P= 0.0173) and β-diversity (r2= 0.388, P= 0.0075), rather than an increase in the α-diversity of individual communities. Moisture and pH controlled most of the differences in composition between communities. Measures of species richness and correlations with moisture and pH within communities differed among vascular, bryophyte, and lichen species. Bryophyte richness was positively correlated with moisture (r2= 0.862, P= 0.0010) and lichen richness was negatively correlated with moisture (r2= 0.809, P= 0.0031). Vascular plants had a peak in richness at pH 6.5 (r2= 0.214, P < 0.0001). We conclude that site variation in vascular richness in this region is controlled by landscape heterogeneity, and structured as variation in the number and distinctiveness of recognizable plant communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号