首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, by using the adaptive dynamics approach, we investigate how the adaptive evolution of defense ability promotes the diversity of prey species in an initial one-prey–two-predator community. We assume that the prey species can evolve to a safer strategy such that it can reduce the predation risk, but a prey with a high defense ability for one predator may have a low defense ability for the other and vice versa. First, by using the method of critical function analysis, we find that if the trade-off is convex in the vicinity of the evolutionarily singular strategy, then this singular strategy is a continuously stable strategy. However, if the trade-off is weakly concave near the singular strategy and the competition between the two predators is relatively weak, then the singular strategy may be an evolutionary branching point. Second, we find that after the branching has occurred in the prey strategy, if the trade-off curve is globally concave, then the prey species might eventually evolve into two specialists, each caught by only one predator species. However, if the trade-off curve is convex–concave–convex, the prey species might eventually branch into two partial specialists, each being caught by both of the two predators and they can stably coexist on the much longer evolutionary timescale.  相似文献   

2.
It is well known that two predators with different functional responses can coexist on one prey when the system exhibits nonequilibrium dynamics. In this paper, we investigate under which conditions such coexistence is evolutionarily stable, and whether the two predators may evolve from a single ancestor via evolutionary branching. We assume that predator strategies differ in handling time, and hence in the shape of their Holling type II functional response. Longer handling times are costly in terms of lost foraging time, but allow the predator to extract more nutrients from the prey and therefore to produce more offspring per consumed prey. In the analysis, we apply a new method to accommodate arbitrary trade-off functions between handling time and offspring production. Contrary to previous results obtained assuming a particular trade-off [Kisdi, E. and Liu, S., 2006. J. Evol. Biol. 19, 49-58], we find that evolutionary branching of handling time is possible, although it does not appear to be very likely and can be excluded for a class of trade-offs. Evolutionarily stable coexistence of two predators occurs under less restrictive conditions, which are always satisfied when the trade-off function has two strongly concave parts connected by a convex piece.  相似文献   

3.
Animals experiencing a trade-off between predation risk and resource acquisition must accurately predict ambient levels of predation risk to maximize fitness. We measure this trade-off explicitly in larvae of the damselfly Enallagma antennatum, comparing consumption rates in the presence of chemical cues from predators and injured prey. Damselflies distinguished among types of chemical cues based on species of prey injured or eaten. Injured coexisting heterospecific and unknown heterospecific chemical cues did not reduce foraging relative to starved predator cues, while cues arising from predators eating a coexisting heterospecific did decrease foraging. This study shows a cost in terms of reduced foraging in response to chemical cues and further defines the ability of prey to respond discerningly to chemical cues.  相似文献   

4.
This article uses models to propose an explanation for three observations in community ecology: the apparent overreaction of prey to attack by specialist predators, the existence of a common trade-off among components of competitive ability in communities of unrelated competitors, and the ability of invading species to break the native trade-off. Strategies that increase resource collection ability are assumed to increase vulnerability to attack by specialist consumers according to a vulnerability function. If competitors compete for a common resource and share the same form of the vulnerability function, then they are favored to converge on the same evolutionarily stable level of competitiveness or trade-off curve even if the parameters describing their specialized consumers differ. The position of the common strategy or trade-off curve depends on the whole guild, with more speciose guilds tending to favor higher levels of competitiveness. Invaders can break the native trade-off if they come from a guild with a higher trade-off curve, an effect possibly enhanced evolutionarily by escape from specialist consumers.  相似文献   

5.
Zu J  Takeuchi Y 《Bio Systems》2012,109(2):192-202
In this paper, with the method of adaptive dynamics and critical function analysis, we investigate the evolutionary diversification of prey species. We assume that prey species can evolve safer strategies such that it can reduce the predation risk, but this has a cost in terms of its reproduction. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for continuously stable strategy and evolutionary branching in the prey strategy. It is found that if the trade-off curve is globally concave, then the evolutionarily singular strategy is continuously stable. However, if the trade-off curve is concave-convex-concave and the prey's sensitivity to crowding is not strong, then the evolutionarily singular strategy may be an evolutionary branching point, near which the resident and mutant prey can coexist and diverge in their strategies. Second, we find that after branching has occurred in the prey strategy, if the trade-off curve is concave-convex-concave, the prey population will eventually evolve into two different types, which can coexist on the long-term evolutionary timescale. The algebraical analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible for the concave-convex-concave trade-off relationship.  相似文献   

6.
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. Here we report results of an evolutionary experiment where prey bacteria Serratia marcescens was exposed to predatory protozoa Tetrahymena thermophila in low- and high-resource environments for approximately 2400 prey generations. Predation generally increased prey allocation to defence and caused prey selection lines to become more diverse. On average, prey became most defensive in the high-resource environment and suffered from reduced resource use ability more in the low-resource environment. As a result, the evolution of stronger prey defence in the high-resource environment led to a strong decrease in predator-to-prey ratio. Predation increased temporal variability of populations and traits of prey. However, this destabilizing effect was less pronounced in the high-resource environment. Our results demonstrate that prey resource availability can shape the trade-off allocation of prey traits, which in turn affects multiple properties of the evolving predator-prey system.  相似文献   

7.
Functional decoupling of oral and pharyngeal jaws is widely considered to have expanded the ecological repertoire of cichlid fishes. But, the degree to which the evolution of these jaw systems is decoupled and whether decoupling has impacted trophic diversification remains unknown. Focusing on the large Neotropical radiation of cichlids, we ask whether oral and pharyngeal jaw evolution is correlated and how their evolutionary rates respond to feeding ecology. In support of decoupling, we find relaxed evolutionary integration between the two jaw systems, resulting in novel trait combinations that potentially facilitate feeding mode diversification. These outcomes are made possible by escaping the mechanical trade-off between force transmission and mobility, which characterizes a single jaw system that functions in isolation. In spite of the structural independence of the two jaw systems, results using a Bayesian, state-dependent, relaxed-clock model of multivariate Brownian motion indicate strongly aligned evolutionary responses to feeding ecology. So, although decoupling of prey capture and processing functions released constraints on jaw evolution and promoted trophic diversity in cichlids, the natural diversity of consumed prey has also induced a moderate degree of evolutionary integration between the jaw systems, reminiscent of the original mechanical trade-off between force and mobility.  相似文献   

8.
I tested the hypothesis that spatial structure provides a trade-off between reproduction and predation risk and thereby facilitates predator-mediated coexistence of competing prey species. I compared a cellular automata model to a mean-field model of two prey species and their common predator. In the mean-field model, the prey species with the higher reproductive rate (the superior competitor) always outcompeted the other species (the inferior competitor), both in the presence of and the absence of the predator. In the cellular automata model, both prey species, which differed only in their reproductive rates, coexisted for a long time in the presence of their common predator at intermediate levels of predation. At low predation rates, the superior competitor dominated, while high predation rates favored the inferior competitor. This discrepancy in the results of the different models was due to a trade-off that spontaneously emerged in spatially structured populations; that is, the more clustered distribution of the superior competitor made it more susceptible to predation. In addition, coexistence of competing prey species declined with increasing dispersal ranges of either prey or predator, which suggests that the trade-off that results from spatial structure becomes less important as either prey or predator disperse over a broader range.  相似文献   

9.
On the ecological timescale, two predator species with linear functional responses can stably coexist on two competing prey species. In this paper, with the methods of adaptive dynamics and critical function analysis, we investigate under what conditions such a coexistence is also evolutionarily stable, and whether the two predator species may evolve from a single ancestor via evolutionary branching. We assume that predator strategies differ in capture rates and a predator with a high capture rate for one prey has a low capture rate for the other and vice versa. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for evolutionary branching in the predator strategy. It is found that if the trade-off curve is weakly convex in the vicinity of the singular strategy and the interspecific prey competition is not strong, then this singular strategy is an evolutionary branching point, near which the resident and mutant predator populations can coexist and diverge in their strategies. Second, we find that after branching has occurred in the predator phenotype, if the trade-off curve is globally convex, the predator population will eventually branch into two extreme specialists, each completely specializing on a particular prey species. However, in the case of smoothed step function-like trade-off, an interior dimorphic singular coalition becomes possible, the predator population will eventually evolve into two generalist species, each feeding on both of the two prey species. The algebraical analysis reveals that an evolutionarily stable dimorphism will always be attractive and that no further branching is possible under this model.  相似文献   

10.
Trade-offs are believed to impose major constraints on adaptive evolution, and they arise when modification of a trait improves one aspect of performance but incurs a cost in another. Here we show that performance costs that result from competing demands on one trait can be mitigated by compensatory changes in other traits, so long as performance has a complex basis. Numerical simulations indicate that increases in the number of traits that determine performance decrease the strength of performance trade-offs. In centrarchid fishes, multiple traits underlie suction feeding performance, and experimental data and hydrodynamic modeling show that combinations of traits evolve to increase the ability to feed on attached prey while mitigating costs to performance on evasive prey. Diet data for centrarchid species reveal a weak trade-off between these prey types, corroborating the results based on hydrodynamic modeling and suggesting that complexity in the functional basis of suction feeding performance enhances trophic diversification. Complexity may thus permit the evolution of combinations of high-performance behaviors that appear to violate underlying trade-offs, such as the ability to exert high suction forces with large gape. This phenomenon may promote morphological, functional, and ecological diversification in the face of the myriad selective demands organisms encounter.  相似文献   

11.
Phenotypically plastic traits can be expressed as continuous reaction norms or as threshold traits, but little is known about the selective conditions that favor one over the other. We study this question using a model of prey defenses in which prey can induce any level of defense conditional on cues that are informative of local predator density. The model incorporates a trade-off between defense expression and fecundity and feedback between the defense level of prey and predator attack rates. Both continuous reaction norms and threshold traits can emerge as evolutionarily stable solutions of defense induction, and we show that the shape of the trade-off curve plays a key role in determining the outcome. Threshold traits are favored when selection is disruptive. Ecological conditions that favor defense dimorphisms in the absence of cues will favor threshold traits in the presence of slightly informative cues. We caution that continuous reaction norms and threshold traits may result in similar patterns of defense expression at the population level, and we discuss potential pitfalls of inferring reaction norm type from observational data.  相似文献   

12.
Social animals are capable of enhancing their awareness by paying attention to their neighbors, and prey found in groups can also confuse their predators. Both sides of these sensory benefits have long been appreciated, yet less is known of how the perception of events from the perspectives of both prey and predator can interact to influence their encounters. Here we examined how a visual sensory mechanism impacts the collective motion of prey and, subsequently, how their resulting movements influenced predator confusion and capture ability. We presented virtual prey to human players in a targeting game and measured the speed and accuracy with which participants caught designated prey. As prey paid more attention to neighbor movements their collective coordination increased, yet increases in prey coordination were positively associated with increases in the speed and accuracy of attacks. However, while attack speed was unaffected by the initial state of the prey, accuracy dropped significantly if the prey were already organized at the start of the attack, rather than in the process of self-organizing. By repeating attack scenarios and masking the targeted prey’s neighbors we were able to visually isolate them and conclusively demonstrate how visual confusion impacted capture ability. Delays in capture caused by decreased coordination amongst the prey depended upon the collection motion of neighboring prey, while it was primarily the motion of the targets themselves that determined capture accuracy. Interestingly, while a complete loss of coordination in the prey (e.g., a flash expansion) caused the greatest delay in capture, such behavior had little effect on capture accuracy. Lastly, while increases in collective coordination in prey enhanced personal risk, traveling in coordinated groups was still better than appearing alone. These findings demonstrate a trade-off between the sensory mechanisms that can enhance the collective properties that emerge in social animals and the individual group member’s predation risk during an attack.  相似文献   

13.
Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical determinant of the suction performance, this snout allometry will inevitably affect the suction feeding ability. To test whether the snout is optimised for suction feeding throughout an ontogeny, we simulated the expansion of different snout shapes varying from extremely long and slender to short and broad for juvenile and adult snout sizes, using computational fluid dynamic models. Our results showed that the snout diameter at the start of the simulations is involved in a trade-off between the realizable suction volume and expansion time on the one hand (improving with larger initial diameters), and maximal flow velocity on the other hand (improving with smaller initial diameters). Moreover suction performance (suction volume as well as maximal attainable flow velocity) increased with decreasing snout length. However, an increase in snout length decreases the time to reach the prey by the cranial rotation, which may explain the prevalence of long snouts among syngnathid fishes despite the reduced suction performance. Thus, the design of the seahorse snout revolves around a trade-off between the ability to generate high-volume suction versus minimisation of the time needed to reach the prey by the cranial rotation.  相似文献   

14.
In this study we explored the effect of the physical environment and the availability of prey (biomass and taxonomic composition) on the patterns of prey capture and reproduction on five populations of Pinguicula moranensis (Lentibulariaceae) in areas ranging from pine-oak forests to desert scrublands. Environmental variation was summarized using principal factor analysis. Prey availability and prey capture increased toward the shadiest, most humid, and fertile population. The probability of reproduction and average bud production per population did not follow the same tendency because both fitness components peaked at the middle of the environmental gradient. These results suggest that the benefits derived from carnivory are maximized at sites fulfilling a trade-off between light, moisture, and prey availability. We also found that the taxonomic composition of both the available prey and that of the prey captured by plants varied among populations. The results also indicated that the prey captured by plants are not a random sample of prey available within populations. Overall, the results from this study revealed a marked amount of heterogeneity in the physical and biotic environment among the populations of P. moranensis, which has the potential to affect the outcome of the interaction between this carnivorous species and its prey.  相似文献   

15.
16.
Induced prey defences against consumers are conspicuous in microbes, plants and animals. In toxigenic prey, a defence fitness cost should result in a trade-off between defence expression and individual growth. Yet, previous experimental work has failed to detect such induced defence cost in toxigenic phytoplankton. We measured a potential direct fitness cost of grazer-induced toxin production in a red tide dinoflagellate prey using relative gene expression (RGE) of a mitotic cyclin gene (cyc), a marker that correlates to cell growth. This approach disentangles the reduction in cell growth from the defence cost from the mortality by consumers. Treatments where the dinoflagellate Alexandrium catenella were exposed to copepod grazers significantly increased toxin production while decreasing RGE of cyc, indicating a defence-growth trade-off. The defence fitness cost represents a mean decrease of the cell growth rate of 32%. Simultaneously, we estimate that the traditional method to measure mortality loss by consumers is overestimated by 29%. The defence appears adaptive as the prey population persists in quasi steady state after the defence is induced. Our approach provides a novel framework to incorporate the fitness cost of defence in toxigenic prey–consumer interaction models.  相似文献   

17.
Optimization of cryptic coloration in heterogeneous habitats   总被引:3,自引:0,他引:3  
We present a theoretical approach to the optimization of crypsis in heterogeneous habitats. Our model habitat consists of two different microhabitats, and the optimal combination of crypsis in the microhabitats is supposed to maximize the probability of escaping detection by a predator. The probability of escaping detection for a prey is a function of: (i)degree of crypsis, (ii) probability of occurrence in the microhabitats and (iii) probability of encountering a predator in the microhabitats. Because crypsis is background-specific there is a trade-off between crypsis in two visually different microhabitats. Depending on the nature of the trade-off, the optimal coloration is either a compromise between the requirements of the differing microhabitats or entirely adapted to only one of them. An increased risk of predation in one of the microhabitats favours increased crypsis in that microhabitat. Because the trade-off constrains possible optimal solutions, it is not possible to predict the optimal coloration only from factors (i)-(iii). However, habitat choice may fundamentally change the situation. If minimizing predation risk does not incur any costs, the prey should exclusively prefer the microhabitat where it has a lower probability of encountering a predator and better crypsis. The implications of these results for variation in cryptic coloration and polymorphism are discussed.  相似文献   

18.
Predators can cause a shift in both density and frequency of a prey phenotype that may lead to phenotypic divergence through natural selection. What is less investigated is that predators have a variety of indirect effects on prey that could potentially have large evolutionary responses. We conducted a pond experiment to test whether differences in predation risk in different habitats caused shifts in behavior of prey that, in turn, would affect their morphology. We also tested whether the experimental data could explain the morphological variation of perch in the natural environment. In the experiment, predators caused the prey fish to shift to the habitat with the lower predation risk. The prey specialized on habitat-specific resources, and there was a strong correlation between diet of the prey fish and morphological variation, suggesting that resource specialization ultimately affected the morphology. The lack of differences in competition and mortality suggest that the morphological variation among prey was induced by differences in predation risk among habitats. The field study demonstrated that there are differences in growth related to morphology of perch in two different habitats. Thus, a trade-off between foraging and predator avoidance could be responsible for adaptive morphological variation of young perch.  相似文献   

19.
State-dependent risk-taking by predators in systems with defended prey   总被引:2,自引:0,他引:2  
Thomas N. Sherratt 《Oikos》2003,103(1):93-100
Even defended prey items may contain nutrients that can sustain predators in times of energetic need. Conversely, a well-fed predator might be expected to avoid attacking prey items that have a chance of being defended, particularly if there is an abundance of familiar palatable prey to support it. To further understand the implications of optimal state-dependent foraging behaviour by predators in systems that contain defended prey, I developed a stochastic dynamic programming model. This state-dependent approach formally accounts for the trade-off between avoiding starvation and minimising harm from attacking defended prey. It predicts that the mean attack probability of predators on defended models and their undefended mimics should decline in a sigmoidal fashion with increasing availability of alternative undefended prey, and that the foraging decisions of predators should in general be relatively insensitive to the probability that a potentially defended prey item is indeed defended. Some implications of these predictions are that conspicuous warning signals are more likely to evolve in systems that contain an abundance of alternative undefended prey, and that imperfect mimicry will provide almost complete protection to the mimic when predators are readily supported by alternative food sources. Somewhat surprisingly, increasing the density of nutritious undefended mimics while keeping the densities of all other prey types constant tended to decrease the attack rates of predators on encounter with mimics and their defended models. This increase in dietary conservatism arose because in these cases there would be more prey available to sustain the predator if it ever found itself critically low in energy.  相似文献   

20.
Trade-offs have a central role in evolutionary ecology and life-history theory. Here, we present evidence for the existence of a rarely studied trade-off between growth rate and starvation endurance in larvae of a pit-building antlion. We first manipulated antlions’ feeding regime and obtained a spectrum of growth rates. Next, we starved the antlions and documented their rate of mass loss. Antlions growing faster during the feeding phase also lost mass faster during the successive starvation period, implying the existence of an induced trade-off between fast growth and starvation endurance. Finally, we fed all antlions with prey items of similar mass and measured both the giving-up prey mass (i.e. the remaining body mass of the prey that was not converted into predator body mass), and growth efficiency of antlions (i.e. proportion of prey consumed, negatively correlated with giving-up prey mass). The giving-up mass was negatively correlated with the growth rate of the antlions during the feeding phase, and positively correlated with their growth rate during the starvation phase (the opposite pattern was evident when examining growth efficiency), incongruently with the common phenomenon of growth compensation (i.e. extracting more of the prey after a starvation period). We suggest that antlion larvae can adopt a physiological mode bounded by two extremes: one extreme is adapted to starvation, involving reduced metabolic rates but also reduced capability to exploit prey, while the other is adapted to fast growth, allowing an efficient exploitation of prey, but at the expense of lowered starvation endurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号