首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed an improved method for accurately measuring telomere lengths based on two-dimensional calibration of DNA sizes combined with pulsed field electrophoresis and quantitative analysis of high-resolution gel images. This method was used to quantify the length of telomeres in longitudinal samples of peripheral blood mononuclear cells (PBMCs) from five chimpanzees infected with human immunodeficiency virus type 1 (HIV-1) and three uninfected animals, 14 to 27 years of age. The average length of the telomere restriction fragments (TRF) of infected and uninfected chimpanzees were 11.7 ± 0.25 kbp, and 11.6 ± 0.61 kbp, respectively, and were about 1 kbp and 3 kbp longer than those of human infants and 30 year old adults, respectively. There was a trend of a slight decrease (30–60 bp per year) in the TRF of two HIV infected chimpanzees over 30–35 months, while the TRF of one naive chimpanzee slightly increased over 20 months. Although the number of chimpanzees in this study is small and no statistically significant linear dependencies on time were observed, it appears that in chimpanzees, rates of shortening of the TRF are comparable or smaller than in adult humans and are not significantly affected by HIV-1 infection, which may be related to the inability of HIV-1 to cause disease in these animals.  相似文献   

2.
Simian-human immunodeficiency virus (SHIV) models for human immunodeficiency virus (HIV) infection have been widely used in passive studies with HIV neutralizing antibodies (NAbs) to test for protection against infection. However, because SHIV-infected adult macaques often rapidly control plasma viremia and any resulting pathogenesis is minor, the model has been unsuitable for studying the impact of antibodies on pathogenesis in infected animals. We found that SHIVSF162P3 infection in 1-month-old rhesus macaques not only results in high persistent plasma viremia but also leads to very rapid disease progression within 12 to 16 weeks. In this model, passive transfer of high doses of neutralizing IgG (SHIVIG) prevents infection. Here, we show that at lower doses, SHIVIG reduces both plasma and peripheral blood mononuclear cell (PBMC)-associated viremia and mitigates pathogenesis in infected animals. Moreover, production of endogenous NAbs correlated with lower set-point viremia and 100% survival of infected animals. New SHIV models are needed to investigate whether passively transferred antibodies or antibodies elicited by vaccination that fall short of providing sterilizing immunity impact disease progression or influence immune responses. The 1-month-old rhesus macaque SHIV model of infection provides a new tool to investigate the effects of antibodies on viral replication and clearance, mechanisms of B cell maintenance, and the induction of adaptive immunity in disease progression.  相似文献   

3.
One of the mechanisms by which HIV infection induces the depletion of CD4+ T cells has been suggested to be impairment of T-cell development in the thymus, although there is no direct evidence that this occurs. To examine this possibility, we compared T-cell maturation in the intrathymic progenitors between macaques infected with an acute pathogenic chimeric simian-human immunodeficiency virus (SHIV), which causes profound and irreversible CD4+ T-cell depletion, and macaques infected with a less pathogenic SHIV, which causes only a transient CD4+ T-cell decline. Within 27 days post-inoculation (dpi), the two virus infections caused similar increases in plasma viral loads and similar decreases in CD4+ T-cell counts. However, in the thymus, the acute pathogenic SHIV resulted in increased thymic involution, atrophy and the depletion of immature T cells including CD4(+)CD8(+) double-positive (DP) cells, whereas the less pathogenic SHIV did not have these effects. Ex vivo differentiation of CD3(-)CD4(-)CD8(-) triple-negative (TN) intrathymic progenitors to DP cells was assessed by a monkey-mouse xenogenic fetal thymus organ culture system. Differentiation was impaired in the TN intrathymic progenitors of the acute pathogenic SHIV-infected monkeys, while differentiation was not impaired in the TN intrathymic progenitors of the less pathogenic SHIV-infected monkeys. These differences suggest that dysfunction of thymic maturation makes an important contribution to the irreversible depletion of circulating CD4+ T cells in vivo.  相似文献   

4.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) subtype C is responsible for more than 56% of all infections in the HIV and AIDS pandemic. It is the predominant subtype in the rapidly expanding epidemic in southern Africa. To develop a relevant model that would facilitate studies of transmission, pathogenesis, and vaccine development for this subtype, we generated SHIV(MJ4), a simian/human immunodeficiency virus (SHIV) chimera based on HIV-1 subtype C. SHIV(MJ4) contains the majority of env, the entire second exon of tat, and a partial sequence of the second exon of rev, all derived from a CCR5-tropic, primary isolate envelope clone from southern Africa. SHIV(MJ4) replicated efficiently in human, rhesus, and pig-tailed macaque peripheral blood mononuclear cells (PBMCs) in vitro but not in CEMx174 cells. To assess in vivo infectivity, SHIV(MJ4) was intravenously inoculated into four rhesus macaques (Macaca mulatta). All four animals became infected as determined through virus isolation, PCR analysis, and viral loads of 10(7) to 10(8) copies of viral RNA per ml of plasma during the primary infection phase. We have established a CCR5-tropic SHIV(MJ4)/rhesus macaque model that may be useful in the studies of HIV-1 subtype C immunology and biology and may also facilitate the evaluation of vaccines to control the spread of HIV-1 subtype C in southern Africa and elsewhere.  相似文献   

6.
A tetrameric recombinant major histocompatibility complex (MHC) class II-peptide complex was used to quantitate human immunodeficiency virus type 1 (HIV-1) envelope (Env)-specific CD4(+) T cells in vaccinated and in simian/human immunodeficiency virus (SHIV)-infected rhesus monkeys. A rhesus monkey MHC class II DR molecule, Mamu-DR*W201, and an HIV-1 Env peptide (p46) were employed to construct this tetrameric complex. A p46-specific proliferative response was seen in sorted, tetramer-binding, but not nonbinding, CD4(+) T cells, directly demonstrating that this response was mediated by the epitope-specific lymphocytes. Although staining of whole blood from 10 SHIV-infected Mamu-DR*W201(+) rhesus monkeys failed to demonstrate tetramer-binding CD4(+) T cells (<0.02%), p46-stimulated peripheral blood mononuclear cells (PBMCs) from 9 of these 10 monkeys had detectable p46 tetramer-binding cells, comprising 0.5 to 15.2% of the CD4(+) T cells. p46-stimulated PBMCs from 7 of 10 Mamu-DR*W201(+) monkeys vaccinated with a recombinant canarypox virus-HIV-1 env construct also demonstrated p46 tetramer-binding cells, comprising 0.9 to 7.2% of the CD4(+) T cells. Thus, Env p46-specific CD4(+) T cells can be detected by tetrameric Mamu-DR*W201-p46 complex staining of PBMCs in both SHIV-infected and vaccinated rhesus monkeys. These epitope-specific cell populations appear to be present in peripheral blood at a very low frequency.  相似文献   

7.
Chen Z  Huang Y  Zhao X  Skulsky E  Lin D  Ip J  Gettie A  Ho DD 《Journal of virology》2000,74(14):6501-6510
The increasing prevalence of human immunodeficiency virus type 1 (HIV-1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating strategies against the transmission of the virus. A chimeric simian/human immunodeficiency virus (SHIV), SHIV(CHN19), was generated with a primary, non-syncytium-inducing HIV-1 subtype C envelope from a Chinese strain in the background of SHIV(33). Unlike R5-tropic SHIV(162), SHIV(CHN19) was not found to replicate in rhesus CD4(+) T lymphocytes. SHIV(CHN19) does, however, replicate in CD4(+) T lymphocytes of pig-tailed macaques (Macaca nemestrina). The observed replication competence of SHIV(CHN19) requires the full tat/rev genes and partial gp41 region derived from SHIV(33). To evaluate in vivo infectivity, SHIV(CHN19) was intravenously inoculated, at first, into two pig-tailed and two rhesus macaques. Although all four animals became infected, the virus replicated preferentially in pig-tailed macaques with an earlier plasma viral peak and a faster seroconversion. To determine whether in vivo adaptation would enhance the infectivity of SHIV(CHN19), passages were carried out serially in three groups of two pig-tailed macaques each, via intravenous blood-bone marrow transfusion. The passages greatly enhanced the infectivity of the virus as shown by the increasingly elevated viral loads during acute infection in animals with each passage. Moreover, the doubling time of plasma virus during acute infection became much shorter in passage 4 (P4) animals (0.2 day) in comparison to P1 animals (1 to 2 days). P2 to P4 animals all became seropositive around 2 to 3 weeks postinoculation and had a decline in CD4/CD8 T-cell ratio during the early phase of infection. In P4 animals, a profound depletion of CD4 T cells in the lamina propria of the jejunum was observed. Persistent plasma viremia has been found in most of the infected animals with sustained viral loads ranging from 10(3) to 10(5) per ml up to 6 months postinfection. Serial passages did not change the viral phenotype as confirmed by the persistence of the R5 tropism of SHIV(CHN19) isolated from P4 animals. In addition, the infectivity of SHIV(CHN19) in rhesus peripheral blood mononuclear cells was also increased after in vivo passages. Our data indicate that SHIV(CHN19) has adapted well to grow in macaque cells. This established R5-tropic SHIV(CHN19)/macaque model would be very useful for HIV-1 subtype C vaccine and pathogenesis studies.  相似文献   

8.
We have previously demonstrated that peptide immunization restimulates the memory CD4 T-cell response, but fails to induce cytotoxic T lymphocyte (CTL) in cynomolgus macaques. To examine the nature of protective immunity to simian immunodeficiency virus (SIV) in this study, freshly isolated peripheral blood mononuclear cells (PBMC) from four infected juvenile cynomolgus macaques and from three uninfected control macaques were assessed for CTL activity monthly for 9 consecutive months, beginning 1 month after detection of infection. Target cells consisted of major histocompatibility (MHC) haploidentical parental PBMC which were stimulated with mitogen and then pulsed with heat-killed SIVcyn. CTL activity was demonstrated in PBMCs from all four infected animals. The effector cells are T cells which mediate cytotoxicity against SIVcyn-pulsed target cells in an MHC-restricted manner. Furthermore, the cytotoxicity is virus specific and predominantly, if not exclusively, mediated by CD8+ T cells; it is also MHC class I restricted. Incubation of target cells with pepstatin A during antigen pulsing prior to the cytotoxic assay inhibited target cell generation, suggesting that viral antigens are processed via an endocytic pathway.  相似文献   

9.
We previously reported that high-titered neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope can block the establishment of a simian immunodeficiency virus (SIV)/HIV chimeric virus (SHIV) infection in two monkeys following passive transfer (R. Shibata et al., Nat. Med. 5:204-210, 1999). In the present study, increasing amounts of neutralizing immunoglobulin G (IgG) were administered to 15 pig-tailed macaques in order to obtain a statistically valid protective neutralization endpoint titer in plasma. Using an in vitro assay which measures complete neutralization of the challenge SHIV, we correlated the titers of neutralizing antibodies in plasma at the time of virus inoculation (which ranged from 1:3 to 1:123) with the establishment of infection in virus-challenged animals. Ten of 15 monkeys in the present experiment were virus free as a result of neutralizing IgG administration as monitored by DNA PCR (peripheral blood mononuclear cells and lymph node cells), RNA PCR (plasma), virus isolation, and the transfer of lymph node cell suspensions (10(8) cells) plus 8 ml of whole blood from protected animals to na?ve macaques. The titer of neutralizing antibodies in the plasma calculated to protect 99% of virus-challenged monkeys was 1:38.  相似文献   

10.
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.  相似文献   

11.
We intrarectally infected newborn macaques with a pathogenic simian/human immunodeficiency virus (SHIV) that induced rapid and profound CD4 (+) T cell depletion, and examined the early effects of this SHIV on the thymus. After intrarectal infection, viral loads were much higher in the thymus than in other lymphoid tissues in newborns. In contrast, no clear difference was seen in the viral loads of different tissues in adults. Histological and immunohistochemical observations showed severe thymic involution. Depletion of CD4 (+) thymocytes began in the medulla at 2 weeks post infection and spread over the whole thymus. After in vivo infection, the CD2 (+) subpopulation, which represents a relatively later stage of T cell progenitors, was selectively reduced and development of thymocytes from CD3 (-) CD4 (-) CD8 (-) cells to CD4 (+) CD8 (+) cells was impaired. These results suggest that profound and irreversible loss of CD4 (+) cells that are observed in the peripheral blood of SHIV-infected monkeys are due to destruction of the thymus and impaired thymopoiesis as a result of SHIV infection in the thymus.  相似文献   

12.
The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20(+) B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.  相似文献   

13.
Previous studies suggested that simian immunodeficiency viruses isolated from African green monkeys (SIVagm) are relatively nonpathogenic. The report describes the isolation and biologic and molecular characterization of a pathogenic SIVagm strain derived from a naturally infected African green monkey. This virus induced an AIDS-like syndrome characterized by early viremia, frequent thrombocytopenia, severe lymphoid depletion, opportunistic infections, meningoencephalitis, and death of five of eight macaques within 1 year after infection. An infectious clone derived from this isolate reproduced the immunodeficiency disease in pig-tailed (PT) macaques, providing definitive proof of the etiology of this syndrome. Although the virus was highly pathogenic in PT macaques, no disease was observed in experimentally infected rhesus macaques and African green monkeys despite reproducible infection of the last two species. Whereas infection of PT macaques was associated with a high viral load in plasma, peripheral blood mononuclear cells, and tissues, low-level viremia and infrequent expression in lymph nodes of rhesus macaques and African green monkeys suggest that differences in pathogenicity are associated with the extent of in vivo replication. The availability of a pathogenic molecular clone will provide a useful model for the study of viral and host factors that influence pathogenicity.  相似文献   

14.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

15.
Several macaques species are used for HIV pathogenesis and vaccine studies, and the characterization of their major histocompatibility complex (MHC) class I genes is required to rigorously evaluate the cellular immune responses induced after immunization and/or infection. In this study, we demonstrate that the gene expressing the Mane-A*06 allele of pig-tailed macaques is an orthologue of the locus encoding the Mamu-A*05 allele family in rhesus macaques. Analysis of the distribution of this locus in a cohort of 63 pig-tailed macaques revealed that it encodes an oligomorphic family of alleles, highly prevalent (90%) in the pig-tailed macaque population. Similarly, this locus was very frequently found (62%) in a cohort of 80 Indian rhesus macaques. An orthologous gene was also detected in cynomolgus monkeys originating from four different geographical locations, but was absent in two African monkey species. Expression analysis in pig-tailed macaques revealed that the Mane-A*06 alleles encoded by this locus are transcribed at 10- to 20-fold lower levels than other MHC-A alleles (Mane-A*03 or Mane-A*10). Despite their conservation and high prevalence among Asian macaque species, the alleles of the Mane-A*06 family and, by extension their orthologues in rhesus and cynomolgus monkeys, may only modestly contribute to cellular immune responses in macaques because of their low level of expression.  相似文献   

16.
BACKGROUND: Rhesus macaques are frequently used in biomedical research as experimental models for studying infectious diseases and for preclinical vaccination trials. The infection of these monkeys with simian immunodeficiency viruses (SIV) or simian-human immunodeficiency viruses (SHIV) reproduces the clinical and immunological characteristics of human infection by human immunodeficiency virus (HIV). Evolution of the immune response in the infected animals is generally analyzed by determining the lymphocyte subsets on blood samples using flow cytometry but requiring multiple, blood consuming, determinations. METHODS: Cell subsets present in whole-blood samples were labeled with a combination of anti-human monoclonal antibodies to CD2, CD20, CD4, CD8, and CD14 coupled to FITC or PE and analyzed by flow cytometry. RESULTS: In one round, we obtained the precise determination of macaque blood cell composition by flow cytometry. Monocytes, granulocytes, eosinophils, B lymphocytes, helper, and cytotoxic T lymphocytes were distinguished. Results obtained correlated strongly with those obtained with conventional blood cell differential systems and with separate staining of lymphocytes. The analysis of blood from healthy rhesus macaques and SHIV-infected animals demonstrated the accuracy of the determination even in very pathological situations such as macaques with simian AIDS. CONCLUSIONS: Our method allows fast determination of the blood cell composition and will be particularly useful to evaluate the cell subset evolution of macaques involved in large-scale experimental trials.  相似文献   

17.
The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat-specific immune response correlates with non-progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow-up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat-specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat-based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.  相似文献   

18.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

19.
The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat-specific immune response correlates with non-progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow-up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat-specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat-based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.  相似文献   

20.
目的体外制备SHIV1157ipd3N4病毒中国恒河猴细胞适应株,在细胞水平和中国恒河猴体内评价其生物学特性。方法用SHIV1157ipd3N4病毒阴道感染中国恒河猴,在血浆病毒载量高峰期采血分离外周血单核淋巴细胞(PBMCs),与正常中国恒河猴PBMCs共培养。定期测定培养液中的P24抗原水平。当病毒复制达高峰期时收集培养上清,分装并冻存。测定病毒RNA载量、P24抗原浓度和TCID50。静脉感染中国恒河猴,研究该批次SHIV1157ipd3N4在体内的病毒学、免疫学指标变化及变异情况,分析其基本的生物学特性。结果本研究共制备了243 mL SHIV1157ipd3N4病毒原液,gp120序列分析表明病毒未发生变异,CCR5的嗜性也未发生改变。病毒载量为1.586×108 copies/mL,P24抗原水平为1.16×103 pg/mL,TZM-bl细胞测定病毒的TCID50为3.16×103/mL。1 mL SHIV1157ipd3N4静脉成功感染中国恒河猴G1004V,高峰期病毒载量达到1.0×106 copies/mL以上。结论此次制备的SHIV1157ipd3N4细胞适应株生物学特性稳定,适合作为毒种库构建SHIV1157ipd3N4/中国恒河猴模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号