首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

2.
Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.  相似文献   

3.
In species with fertile XY females, such as South American field mice (genus Akodon), there are two types of mitochondrial DNA (mtDNA), one passing from XX females and one from XY females. The XX mothers pass their mtDNA to their XX daughters. The XY mothers, however, produce both XX and XY daughters. Because of this breeding scheme, the XY mtDNA remains isolated whereas the XX lineage is continuously invaded by XY mtDNA haplotypes. Using a set of recursion equations, I predicted that XY mtDNA haplotypes should rapidly spread through entire populations composed of both XX and XY females. I examined patterns of nucleotide polymorphism and divergence from the mtDNA control region as well as phylogenetic patterns for evidence of an mtDNA sweep. I compared patterns in two sister species, Akodon boliviensis and Akodon azarae, that are composed of 35% and 10% XY females, respectively. Akodon boliviensis XY females are found in all clades of a phylogenetic mtDNA tree consistent with the spread of mtDNA haplotypes. In addition, A. azarae mtDNA haplotypes showed no deviations from neutrality. These results, in combination with high levels of mtDNA nucleotide diversity in XY females, suggest an ancient origin (>10(4) generations) of XY females in both A. boliviensis and A. azarae.  相似文献   

4.
McDonald-Kreitman tests of neutrality on mitochondrial DNA (mtDNA) of butterflies, Drosophila, and a variety of vertebrates usually show excess (over the neutral expectation) intraspecific polymorphism at nonsilent sites. These results are of great interest because they are the opposite of what is usually found for nuclear genes, in which the neutral pattern or evidence of adaptive divergence between species is usually observed. However, only vertebrates and insects have been tested so far, so it is not clear whether this intriguing pattern is typical for mtDNA in all taxa. Here I tested three pairs of nematode species and found that they all show a deficit of replacement polymorphism. Taken at face value, this result suggests that adaptive evolution proceeds more efficiently in nematode mtDNA than in mtDNA of vertebrates or insects. An alternate explanation is that the nematode pattern is an artifact of silent-site saturation that results from the rapid and composition-biased way in which nematode mtDNA evolves. Further studies are needed to distinguish between these two hypotheses.  相似文献   

5.
Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA   总被引:4,自引:4,他引:4  
D. M. Rand  M. Dorfsman    L. M. Kann 《Genetics》1994,138(3):741-756
To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology.  相似文献   

6.
C A Wise  M Sraml  S Easteal 《Genetics》1998,148(1):409-421
To test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution, nucleotide sequences were determined for the 1041 bp of the NADH dehydrogenase subunit 2 (ND2) gene in 20 geographically diverse humans and 20 common chimpanzees. Contingency tests of neutrality were performed using four mutational categories for the ND2 molecule: synonymous and nonsynonymous mutations in the transmembrane regions, and synonymous and nonsynonymous mutations in the surface regions. The following three topological mutational categories were also used: intraspecific tips, intraspecific interiors, and interspecific fixed differences. The analyses reveal a significantly greater number of nonsynonymous polymorphisms within human transmembrane regions than expected based on interspecific comparisons, and they are inconsistent with a neutral equilibrium model. This pattern of excess nonsynonymous polymorphism is not seen within chimpanzees. Statistical tests of neutrality, such as TAJIMA''s D test, and the D and F tests proposed by FU and LI, indicate an excess of low frequency polymorphisms in the human data, but not in the chimpanzee data. This is consistent with recent directional selection, a population bottleneck or background selection of slightly deleterious mutations in human mtDNA samples. The analyses further support the idea that mitochondrial genome evolution is governed by selective forces that have the potential to affect its use as a "neutral" marker in evolutionary and population genetic studies.  相似文献   

7.
An explicit assumption of studies that employ a mitochondrial DNA (mtDNA) molecular clock is that mtDNA evolves independently of morphology. Here we report a very strong correlation between egg size divergence and cytochrome c oxidase-1 (CO1) amino acid sequence divergence among sister species of bivalve molluscs separated by the Central American Isthmus (i.e., "geminate" species). Analyses of the molecular data reveal that CO1 sequences likely did not diverge as a function of time or evolve in response to positive natural selection. Given that an excess of CO1 amino acid polymorphism exists within species (as expected if most mutations are only slightly deleterious), a third hypothesis is that reductions in effective population size could simultaneously increase the fixation rate of nearly neutral mtDNA polymorphisms and in some way also facilitate egg size evolution. The remarkable strength of the relationship between egg size and CO1 amino acid sequence demonstrates that, even in the absence of an obvious functional relationship or clock-like evolution, the amounts of molecular and morphological change can be tightly correlated, and therefore may reflect common processes. Accordingly, the assumption that the evolutionary divergence of molecules and morphology are independent must always be carefully examined.  相似文献   

8.
This study presents a revised method for the extraction of mitochondrial genome (mtDNA) from crayfish species of aquacultural interest, Pacifastacus leniusculus. The mean size of the mitochondrial genome is approximately 18 000 bp. Restriction fragment length polymorphism (RFLP) analysis performed on the mtDNA has revealed extensive genetic variability within this species. The estimated percentage of nucleotide sequence divergence among the four haplotypes found for P. leniusculus ranges from 1.16 to 3.99%. These data suggest that RFLP analysis of mtDNA may provide greater resolution than protein electrophoresis for population identification among signal crayfish populations. This marker offers new avenues for aquaculture and for understanding the genetic structure and evolutionary history of crayfish populations.  相似文献   

9.
R Nielsen  D M Weinreich 《Genetics》1999,153(1):497-506
McDonald/Kreitman tests performed on animal mtDNA consistently reveal significant deviations from strict neutrality in the direction of an excess number of polymorphic nonsynonymous sites, which is consistent with purifying selection acting on nonsynonymous sites. We show that under models of recurrent neutral and deleterious mutations, the mean age of segregating neutral mutations is greater than the mean age of segregating selected mutations, even in the absence of recombination. We develop a test of the hypothesis that the mean age of segregating synonymous mutations equals the mean age of segregating nonsynonymous mutations in a sample of DNA sequences. The power of this age-of-mutation test and the power of the McDonald/Kreitman test are explored by computer simulations. We apply the new test to 25 previously published mitochondrial data sets and find weak evidence for selection against nonsynonymous mutations.  相似文献   

10.
Surveys of nucleotide sequence polymorphism in Drosophila melanogaster and Drosophila simulans were performed at 2 interacting loci crucial for gametogenesis: bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn). At the polymorphism level, both loci appear to be evolving under the expectations of the neutral theory. However, ratios of polymorphism and divergence for synonymous and nonsynonymous mutations depart significantly from neutral expectations for both loci consistent with a previous observation of positive selection at bam. The deviations suggest either an excess of synonymous polymorphisms or an excess of nonsynonymous fixations at both loci. Synonymous evolution appears to conform to neutrality at bam. At bgcn, there is evidence of positive selection affecting preferred synonymous mutations along the D. simulans lineage. However, there is also a significantly higher rate of nonsynonymous fixations at bgcn within D. simulans. Thus, the deviation from neutrality detected by the McDonald-Kreitman test at these 2 loci is likely due to the selective acceleration of nonsynonymous fixations. Differences in the pattern of amino acid fixations between these 2 interacting proteins suggest that the detected positive selection is not due to a simple model of coevolution.  相似文献   

11.
The origin and genetic relationships of the Baikal seal, Phoca sibirica, were studied by restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA). Using 17 different six-base recognition restriction endonucleases, we examined 98 Baikal seals, and two other related species, the ringed seal, P. hispida, (n=87), and the Caspian seal, P. caspica, (n=94). Analysis revealed the existence of 87 mtDNA haplotypes in the total of 279 specimens. The haplotypes of each species were divided into different clusters on a dendrogram obtained by UPGMA based on haplotype frequency and mtDNA base substitution. No common haplotypes were found among the species examined. The Baikal seal is much more closely related to the ringed seal than the Caspian seal. The amount of divergence suggested that an ancestor of the Baikal seal came down to the lake approximately 0.4 million years ago as was previously indicated by paleontological studies. The seals examined here showed lower variabilities.  相似文献   

12.
Nucleotide sequences at two mitochondrial genes from 57 individuals representing eight species of deep-sea clams (Vesicomyidae) were examined for variation consistent with the neutral model of molecular evolution. One gene, cytochrome oxidase subunit I (COI), deviated from the expectations of neutrality by containing an excess of intraspecific nonsynonymous polymorphism. Additionally, one species, Calyptogena kilmeri, showed a significant excess of rare polymorphism specifically at the COI locus. In contrast, a second mitochondrial gene, the large-subunit 16S ribosomal RNA gene (16S), showed little deviation from neutrality either between or within species. Together, COI and 16S show no deviation from neutral expectations by the HKA test, produce congruent phylogenetic relationships between species, and show correlated numbers of fixed differences between species and polymorphism within species. These patterns of both neutral and nonneutral evolution within the mitochondrial genome are most consistent with a model where intraspecific nonsynonymous polymorphism at COI is near neutrality. In addition to examining the forces of molecular evolution, we extend hypotheses about interspecific relationships within this family for geographical locations previously unexamined by molecular methods including habitats near the Middle Atlantic, the Aleutian Trench, and Costa Rica. Received: 10 March 1999 / Accepted: 13 September 1999  相似文献   

13.
Patterns of genetic differentiation were analysed and compared in two sympatric species of the endemic Lake Tanganyika cichlid tribe Eretmodini by means of mitochondrial DNA (mtDNA) sequences of the control region and six microsatellite DNA loci. The sample area covers a total of 138 km of mostly uninterrupted rocky shoreline in the Democratic Republic of Congo and includes the entire distribution range of Tanganicodus cf. irsacae that stretches over a distance of 35 km. Both markers detected significant genetic differentiation within and between the two species. T. cf. irsacae contained lower overall genetic variation than Eretmoduscyanostictus, possibly due to its more restricted range of distribution and its smaller effective population sizes. Complete fixation of Tanganicodus mtDNA haplotypes was observed in Eretmodus at two localities, while at two other localities some Tanganicodus individuals possessed Eretmodus mtDNA haplotypes. Taking into account the relatively large average sequence divergence of 6.2% between the two species, as well as the geographical distribution of mtDNA haplotypes in the lake, the observed pattern is more likely to be a consequence of asymmetric introgression than of shared ancestral polymorphism. As there is significant population differentiation between sympatric Tanganicodus and Eretmodus populations, the events of introgressions may have happened after secondary contact, but our data provide no evidence for ongoing gene flow and suggest that both species are reproductively isolated at present time.  相似文献   

14.
Recent empirical and theoretical studies on mitochondrial DNA (mtDNA) variation in higher animals have suggested that the extent of mtDNA polymorphism is largely affected by spatial population subdivision. To examine this we studied mtDNA polymorphism in two subspecies of Drosophila sulfurigaster: D. s. albostrigata and D. s. bilimbata. Drosophila sulfurigaster albostrigata is mainly distributed on the mainland of Southeast Asia. In contrast, D. s. bilimbata forms discontinuous populations on many islands scattered in the Pacific Ocean. Because of the difference in their distribution patterns, the two subspecies are thought to be different in the extent of spatial population subdivision. mtDNA was isolated from greater than 50 isofemale strains for each subspecies and were analyzed by eight restriction endonucleases. Nucleotide diversity within a population was higher in D. s. albostrigata than in D. s. bilimbata. However, haplotype diversity was 1.6 times greater in D. s. bilimbata (0.85) than in D. s. albostrigata (0.53). The large difference in overall heterogeneity was attributed to the difference in interpopulational nucleotide diversity. For the two subspecies the proportion of interpopulational gene diversity in a subdivided population was calculated to be 0.54 in D. s. bilimbata and 0.40 in D. s. albostrigata. These observations indicate that spatial population subdivision is a major factor in determining mtDNA polymorphism in these subspecies. The extent of mtDNA divergence between the subspecies was very high. The average nucleotide divergence between them was 7.6%, which is almost the interspecific level reported for other Drosophila species. The cause of the high degree of mtDNA divergence is discussed.  相似文献   

15.
Unraveling Selection in the Mitochondrial Genome of Drosophila   总被引:15,自引:6,他引:9  
JWO. Ballard  M. Kreitman 《Genetics》1994,138(3):757-772
We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral' molecular marker.  相似文献   

16.
Ort BS  Pogson GH 《Genetics》2007,177(2):1087-1099
The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura-Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald-Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution.  相似文献   

17.
Restriction fragment length polymorphism (RFLP) analysis of mitochondrial DNA was used to examine the regional population structure of a species of gecko (Oedura reticulata) in vegetation remnants within the Western Australian wheatbelt. The species exhibited considerable polymorphism within and between populations with 22 haplotypes recognized among 12 populations. Phylogenetic analysis of haplotypes and clustering of nucleotide divergence among populations demonstrated little regional structure within the species with several haplotypes present in all three regions surveyed. This contrasted markedly with variation in haplotype frequency among populations which showed a high degree of independence between populations indicating that current levels of maternal gene flow are low and that the populations are too small to prevent genetic drift. This conclusion is supported by generally lower numbers of haplotypes in remnant populations than in nearby nature reserves. These findings, combined with demographic data from a previous study, suggest that post-fragmentation populations of O. reticulata are unable to form a metapopulation structure in the habitat that remains and that stochastic extinction forces alone will be sufficient to severely reduce the regional distribution of this species. This study demonstrates that mtDNA is a useful tool for detecting contemporary population phenomena and can provide qualitative information of practical importance to wildlife managers.  相似文献   

18.
Restriction endonuclease analyses of mitochondrial DNA (mtDNA) were used to examine genetic variability and population structure inLeptinotarsa decemlineata (Say). A group of three enzymes, EcoRI, HpaI, and PstI, was used to reveal polymorphism both within and among some of the 10 populations tested, yielding 16 haplotypes in combination. The frequencies of these 16 haplotypes differed significantly across geographic regions, indicating some partitioning of mtDNA haplotypes. Estimates of mtDNA sequence divergence (δ) between haplotypes ranged from 0.016 to 0.135%, suggesting local differentiation of mtDNA in some populations. Analysis of these data suggests that Texas was colonized by more than one mtDNA lineage, most likely originating in Mexico. We hypothesize that a larger founder size for the initial introductions or high levels of variability in the parent population at the edge of the CPB expanding range led to the initial partitioning of haplotypes observed in samples from Texas.  相似文献   

19.
Nucleotide variation in the Acph-1 gene region was analyzed in a natural population of Drosophila subobscura from Bizerte (Tunisia). The lines studied differed in their gene arrangement for segment I of the O chromosome: 21 lines were O3+4+8, 21 were O3+4+23, and 3 were O3+4. According to chromosomal phylogenies, O3+4 is a central arrangement from which O3+4+8 and O3+4+23 originated. Strong genetic differentiation at Acph-1 was detected among the different arrangements, which is reflected in strong linkage disequilibrium between the variants at informative polymorphic sites and the type of arrangement. Estimates of silent nucleotide diversity are slightly lower within O3+4+23 (pisilent = 0.0166) than within O3+4+8 (pisilent = 0.0228) or O3+4 (pisilent = 0.0234). In contrast, nonsynonymous nucleotide diversity estimates (around 0.1%) are similar in the three arrangements. Most nonsynonymous rare variants are singletons, which results in highly significant Tajima's neutrality tests within the young O3+4+8 and O3+4+23 arrangements. This test is not significant for nonsynonymous mutations within a large Spanish O3+4 sample. In addition, a significant and marginally significant excess of nonsynonymous polymorphism was detected by the McDonald and Kreitman test within O3+4+23 and O3+4+8, respectively. This excess results in a rather high neutrality index (NI = 5.25) when both arrangements are jointly analyzed, in contrast to its value within the old O3+4 arrangement (NI = 1.74). The pattern of variation at Acph-1 within the young arrangements is unusual for nuclear genes and has the same characteristics previously detected in most genes of the mitochondrial genome. Assuming that most nonsynonymous mutations at Acph-1 are under weak negative selection, a smaller effective size of the young arrangements relative to O3+4 might explain the observed results. The relatively low frequency of O3+4+8 and O3+4+23 in the distribution area of D. subobscura, the more recent origin of these arrangements relative to O3+4 and the suppression of recombination in heterokaryotypes might contribute to the relatively small effective size of the young arrangements. Therefore, present results indicate that the differences in effective size and recombination caused by chromosomal arrangements are modulating nonsynonymous variation at Acph-1.  相似文献   

20.
Chinese sea bass (Lateolabrax maculatus), an important commercial and recreational fishery species in China, whose natural resources have decreased dramatically for decades due to overfishing and environmental changes. To provide guidelines for the source conservation and management, genetic diversity and population structure of L. maculatus were analyzed based on the mitochondrial cytochrome oxidase subunit I (COI) gene. Totally 192 individuals were sampled from five locations: Qingdao (QD), Chongming (CM), Dongtou (DT), Lieyu (LY) and Fangcheng (FC). After sequencing of a 586 bp fragment of COI gene, 20 haplotypes were defined. H4 (haplotype 4) and H8 were the dominant haplotypes and existed in all populations. Haplotype diversity (Hd) and nucleotide diversity (π) of each population ranged from 0.572 to 0.721 and from 0.00129 to 0.00271, respectively. The highest Hd and π were found in DT and LY populations, while the lowest value of Hd and π were in the QD population. Genetic distance ranged from 0.0031 to 0.0027 within populations and from 0.0018 to 0.0035 between populations. Analysis of molecular variance (AMOVA) revealed that significant genetic divergence was found in QD and FC populations. In addition, neutrality tests and mismatch distribution analysis indicated that this species experienced potential population expansion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号