共查询到20条相似文献,搜索用时 93 毫秒
1.
蛋白质结构预测的现状与展望 总被引:6,自引:0,他引:6
蛋白质分子是由20种不同的氨基酸通过共价键连接而成的线性多肽链,然而天然的球状蛋白质分子的水溶液中并不是一条走向无规的松散肽链,每一种蛋白质在天然条件下都有自己特定的空间结构。遗传信息由DNA到RNA再到蛋白质的过程,是分子生物学研究的中心,通常称之... 相似文献
2.
蛋白质组就是展示一个细胞或组织或机体的全部蛋白质。目前双向凝胶电泳特别是固相pH梯度等电聚焦的双向聚丙烯酰胺凝胶电泳,是分离阵列蛋白质组成分的核心技术,但仍存在诸多不足,通过改善蛋白溶解、阵列策略和蛋白斑点的探测技术,使蛋白质组阵列技术取得了进展。 相似文献
3.
随着蛋白质序列及结构数据的大量累积,在获得了大量描述性信息之后如何有效利用海量数据,从已有数据中高效提取信息并且应用到下游任务当中就成为了研究者亟待解决的问题。蛋白质的设计可使新蛋白的研发不再受限于实验条件,这对药物靶点预测、新药研发和材料设计等领域具有重要意义。深度学习作为一种高效的数据特征提取方法,可以通过它对蛋白质数据进行建模,进而加入先验信息对蛋白质进行设计。故此基于深度学习的蛋白质设计就成为一个具有广阔前景的研究领域。文中主要阐述基于深度学习的蛋白质序列与结构数据的建模和设计方法。详述该方法的策略、原理、适用范围、应用实例。讨论了深度学习方法在本领域的应用前景及局限性,以期为相关研究提供参考。 相似文献
4.
本文综述了近年来蛋白质结构的确定、预测、比较、分类和功能五个问题的研究概况,并分析了解决每个问题的方法,最后指出蛋白质结构研究的发展前景。 相似文献
5.
6.
7.
蛋白质组研究的现状与展望 总被引:11,自引:1,他引:11
蛋白质组是后基因组时代出现的一个新兴研究领域。蛋白质组的研究主要是先通过双向凝胶电泳等方法分离蛋白质,然后用质谱等技术进行鉴定。它是后基因组重要的研究方向之一,具有巨大的商业应用前景,将会推动整个生命科学的发展。蛋白质组研究取得了很大进展,已经成为生物技术中的一个重要领域。 相似文献
8.
9.
基于蛋白质网络功能模块的蛋白质功能预测 总被引:1,自引:0,他引:1
在破译了基因序列的后基因组时代,随着系统生物学实验的快速发展,产生了大量的蛋白质相互作用数据,利用这些数据寻找功能模块及预测蛋白质功能在功能基因组研究中具有重要意义.打破了传统的基于蛋白质间相似度的聚类模式,直接从蛋白质功能团的角度出发,考虑功能团间的一阶和二阶相互作用,提出了模块化聚类方法(MCM),对实验数据进行聚类分析,来预测模块内未知蛋白质的功能.通过超几何分布P值法和增、删、改相互作用的方法对聚类结果进行预测能力分析和稳定性分析.结果表明,模块化聚类方法具有较高的预测准确度和覆盖率,有很好的容错性和稳定性.此外,模块化聚类分析得到了一些具有高预测准确度的未知蛋白质的预测结果,将会对生物实验有指导意义,其算法对其他具有相似结构的网络也具有普遍意义. 相似文献
10.
11.
A redox center similar to that of rubredoxin was designed into the 56 amino acid immunoglobulin binding B1 domain of Streptococcals protein G. The redox center in rubredoxin contains an iron ion tetrahedrally coordinated by four cysteine residues, [Fe(S-Cys)4](-1),(-2). The design criteria for the target site included taking backbone movements into account, tetrahedral metal-binding, and maintaining the structure and stability of the wild-type protein. The optical absorption spectrum of the Co(II) complex of the metal-binding variant is characteristic of tetrahedral chelation by four cysteine residues. Circular dichroism and nuclear magnetic resonance measurements reveal that the metal-free and Cd(II)-bound forms of the variant are folded correctly and are stable. The Fe(III) complex of the metal-binding mutant reproduces the optical and the electron paramagnetic resonance spectra of oxidized rubredoxin. This demonstrates that the engineered protein chelates Fe(III) in a tetrahedral array, and the resulting center is similar to that of oxidized rubredoxin. 相似文献
12.
Xiaoling Zhang Qi Shen Bo Tang Huanhuan Liang Luhua Lai 《Protein science : a publication of the Protein Society》2016,25(11):2066-2075
De novo protein design offers templates for engineering tailor‐made protein functions and orthogonal protein interaction networks for synthetic biology research. Various computational methods have been developed to introduce functional sites in known protein structures. De novo designed protein scaffolds provide further opportunities for functional protein design. Here we demonstrate the rational design of novel tumor necrosis factor alpha (TNFα) binding proteins using a home‐made grafting program AutoMatch. We grafted three key residues from a virus 2L protein to a de novo designed small protein, DS119, with consideration of backbone flexibility. The designed proteins bind to TNFα with micromolar affinities. We further optimized the interface residues with RosettaDesign and significantly improved the binding capacity of one protein Tbab1‐4. These designed proteins inhibit the activity of TNFα in cellular luciferase assays. Our work illustrates the potential application of the de novo designed protein DS119 in protein engineering, biomedical research, and protein sequence‐structure‐function studies. 相似文献
13.
Huang PS Love JJ Mayo SL 《Protein science : a publication of the Protein Society》2007,16(12):2770-2774
As an approach to both explore the physical/chemical parameters that drive molecular self-assembly and to generate novel protein oligomers, we have developed a procedure to generate protein dimers from monomeric proteins using computational protein docking and amino acid sequence design. A fast Fourier transform-based docking algorithm was used to generate a model for a dimeric version of the 56-amino-acid beta1 domain of streptococcal protein G. Computational amino acid sequence design of 24 residues at the dimer interface resulted in a heterodimer comprised of 12-fold and eightfold variants of the wild-type protein. The designed proteins were expressed, purified, and characterized using analytical ultracentrifugation and heteronuclear NMR techniques. Although the measured dissociation constant was modest ( approximately 300 microM), 2D-[(1)H,(15)N]-HSQC NMR spectra of one of the designed proteins in the absence and presence of its binding partner showed clear evidence of specific dimer formation. 相似文献
14.
Stereochemistry could be a powerful variable for conformational tune up of polypeptides for de novo design. It may be also useful probe of possible role of interamide energetics in selection and stabilization of conformation. The homopolypeptides Ac-Xxx30-NHMe, with Xxx = Ala, Val, and Leu, of diversified stereochemical structure are generated by simulated racemization with a modified GROMOS-96 force field. The polypeptides, and other systematic stereochemical variants, are folded by simulated annealing with another modified GROMOS-96 force field under the dielectric constant values 1, 4, and 10. The resultant 15,000 molecular folds of isotactic (poly-L-chiral), syndiotactic (alternating L,D-chiral), and heterotactic (random-L,D-chiral) stereochemical structure, belonging to three polypeptide series, achieved under three different folding conditions, are assessed statistically for structure-to-energy-to-conformation relationship. The results suggest that interamide electrostatics could be a major factor in secondary-structure selection in polypeptides while main-chain stereochemistry could dictate molecular packing and therefore the relative magnitude of hydrogen-bond and Lennard-Jones (LJ) contributions in conformational energy. A method for computational design of heterotactic molecular folds in polypeptide structure has been developed, and the first road map for a chiral tune up of polypeptide structure based on stereochemical engineering has been laid down. Broad implications for protein structure, folding, and de novo design are briefly discussed. 相似文献
15.
16.
We have investigated the structure and dynamics of three cavitand-based four-helix bundles (caviteins) by computer simulation. In these systems, designed de novo, each of the four helices contain the identical basis sequence EELLKKLEELLKKG (N1). Each cavitein consists of a rigid macrocycle (cavitand) with four aryl linkages, to each of which is connected an N1 peptide by means of a linker peptide. The three caviteins studied here differ only in the linker peptide, which consist of one, two, or three glycine residues. Previous experimental work has shown that these systems exhibit very different behavior in terms of stability and oligomerization states despite the small differences in the linker peptide. Given that to date no three-dimensional structure is available for these caviteins, we have undertaken a series of molecular dynamics (MD) simulations in explicit water to try to rationalize the large differences in the experimentally observed behavior of these systems. Our results provide insight, for the first time, into why and how the cavitein with a single glycine linker forms dimers. In addition, our results indicate why although the two- and three-glycine-linked caviteins have similar stabilities, they have different native-like characteristics: the cavitein with three glycines can form a supercoiled helix, whereas the one with two glycines cannot. These findings may provide a useful guide in the rational de novo design of novel proteins with finely tunable structures and functions in the future. 相似文献
17.
Hui Li Walter Fast Stephen J. Benkovic 《Protein science : a publication of the Protein Society》2009,18(5):881-892
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT‐encoded glycinamide ribonucleotide formyltransferase (PurT) and purK‐encoded N5‐carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP‐grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain‐swapped hybrids were unable to catalyze full wild‐type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain‐swapped hybrid proteins was able to restore near wild‐type PurK activity. Therefore, in this model system, domain‐swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed. 相似文献
18.
Lars A. Eicholt Margaux Aubel Katrin Berk Erich BornbergBauer Andreas Lange 《Protein science : a publication of the Protein Society》2022,31(8)
Over the past decade, evidence has accumulated that new protein‐coding genes can emerge de novo from previously non‐coding DNA. Most studies have focused on large scale computational predictions of de novo protein‐coding genes across a wide range of organisms. In contrast, experimental data concerning the folding and function of de novo proteins are scarce. This might be due to difficulties in handling de novo proteins in vitro, as most are short and predicted to be disordered. Here, we propose a guideline for the effective expression of eukaryotic de novo proteins in Escherichia coli. We used 11 sequences from Drosophila melanogaster and 10 from Homo sapiens, that are predicted de novo proteins from former studies, for heterologous expression. The candidate de novo proteins have varying secondary structure and disorder content. Using multiple combinations of purification tags, E. coli expression strains, and chaperone systems, we were able to increase the number of solubly expressed putative de novo proteins from 30% to 62%. Our findings indicate that the best combination for expressing putative de novo proteins in E. coli is a GST‐tag with T7 Express cells and co‐expressed chaperones. We found that, overall, proteins with higher predicted disorder were easier to express.StatementToday, we know that proteins do not only evolve by duplication and divergence of existing proteins but also arise from previously non‐coding DNA. These proteins are called de novo proteins. Their properties are still poorly understood and their experimental analysis faces major obstacles. Here, we aim to present a starting point for soluble expression of de novo proteins with the help of chaperones and thereby enable further characterization. 相似文献
19.
20.
Wei Y Liu T Sazinsky SL Moffet DA Pelczer I Hecht MH 《Protein science : a publication of the Protein Society》2003,12(1):92-102
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins. 相似文献