首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
邻啡罗啉-Cu诱发小麦离体叶片的氧化损伤   总被引:1,自引:0,他引:1  
邻啡罗啉-Cu处理小麦叶片,加快O2^-的产生,提高SOD和POD活性,加速叶绿体色素和蛋白质降解,因而MDA积累增加。暗示邻啡罗啉-Cu有诱导植物组织产生活性氧、促进过氧化的作用。  相似文献   

2.
碱基编辑器(base editor, BE)是一种由脱氨酶与人工核酸结合蛋白结合形成的基因编辑工具,可以对单个碱基进行定点替换,以达到改变核酸序列的目的。其主要特点是能够在不产生核酸完全断裂的条件下,进行高效的碱基编辑,BE在动植物育种以及遗传性疾病的基因治疗领域已经显示出巨大的应用价值。目前已报道的碱基编辑器包括胞嘧啶碱基编辑器、腺嘌呤碱基编辑器、糖苷酶碱基编辑器、双碱基编辑器、线粒体碱基编辑器以及RNA编辑器等。然而,各种碱基编辑器中含有的两个主要功能元件,即脱氨酶和人工核酸结合蛋白,均有脱靶效应,为本技术的广泛应用带来严重的安全隐患。本文通过对不同碱基编辑工具的种类特点、疾病模型治疗现状以及安全性问题和解决方案进行综述,希望对后续的碱基编辑技术的优化研究提供参考。  相似文献   

3.
蛋白质组学(proteomics)诞生以来,高效准确的蛋白质检测技术受到越来越多的关注.最近 ,一种高灵敏度的蛋白质检测技术,邻位连接技术(proximity ligation assay, PLA)被建 立.该技术采用核酸适体(aptamer)或单/多克隆抗体 核酸复合物作为邻位连接探针(proximity probes).当一对邻位探针同时识别同一个目标蛋白分子时,它们将在空间位置上相互临近,通过连接反应形成一段可扩增的DNA标签序列,该标签序列能够反映待测蛋白的种类及浓度.该技术将对蛋白质的检测转变为对DNA核酸序列的检测,实现了特殊蛋白质的检测,定量及定位.文章从该方法的产生背景,发展过程,原理以及探针制备等方面对该方法进行了系统的介绍,列举了该方法的几种重要应用,并对该方法在蛋白质组学研究领域的应用前景进行了展望.  相似文献   

4.
核酸抗体     
核酸抗体的研究始于五十年代中期。最初一些研究者试图用纯DNA免疫动物制备抗体,均告失败。稍后,人们才用DNA与载体蛋白组成复合物免疫动物,获得了核酸抗体,同时还发现既便用碱基、核苷、单核苷酸或寡核苷酸与牛血清清蛋白的复合物也能产生特异性抗体。至此人们开始认识到核酸物质具有抗原性。由于抗体-抗原反应的高度特异性,核酸抗体的研究在核酸的检测、分离和提纯,核酸结构与功能的研究及临床应用等方面都发挥着重要的作用。本文拟就核酸抗体的某些研究情况作一简要介绍。一、核酸的抗原性核酸由碱基、戊糖和磷酸组成。核酸的抗原性由碱基或戊糖-磷酸所决定,因此核酸的抗  相似文献   

5.
关于核酸分子中碱基含量的计算,在遗传学和高中生物教学中相当重要,但在教科书中通常没有专门讲述。我们根据碱基互补配对规律及中心法则进行归纳总结,从DNA结构、DNA复制、转录、翻译等方面探讨了DNA、RNA、蛋白质3者之间的关系,分析了核酸分子中碱基的含量。互核酸分子中碱基含量的计算1.且已知双链DNA分子中一种碱基的含量,推断其他碱基的含量:例1:一双链‘DNA分子中,(A-C)占碱基总量的Zo%。求A、T、G、C各占多少?解:在双链DNA分子中,据规律知,1.2由碱基含量推断核酸分子的结构——单链或双链、DNA或RNA…  相似文献   

6.
纳米通道技术是近年来发展的一种直接解读核酸分子编码信息的新方法,它通过将单链核酸上的核苷酸序列直接转化为电信号,能以每秒超过1 000个碱基的速度对其进行超快速序列分析,较现有测序方法更简便快速和省钱.该技术除可用于核酸超快速外,还在病原体基因诊断、单核苷酸多态性和样品多成分的快速检测等多个领域有重要用途.  相似文献   

7.
染色体DNA携带着生物的遗传信息,生物依赖传递核酸以繁殖后代.产生与亲代等同的子代细胞需要在DNA复制时,子代DNA的碱基序列忠实于亲代DNA的碱基序列. DNA复制主要由DNA聚合酶催化.聚  相似文献   

8.
王强  李刚  李宝健 《病毒学报》2004,20(1):79-80
二碱基指纹是指全部16种二碱基组合在一个序列内的相对丰度.对病毒、线粒体、细菌、真菌、哺乳动物等上百个物种的基因组序列数据,以及可转座元件序列的分析显示[1-8]:二碱基指纹在基因组内序列之间基本一致,亲缘越近的物种其二碱基指纹越相似.根据这个标准重新进行的分类,与目前通行的基于核酸(或者蛋白质)序列相似性比较所形成的分类基本一致,但也有若干值得注意的差别[9].  相似文献   

9.
张德林 《生物学通报》1997,32(12):21-22
当今,许多种病毒性疾病如乙肝、丙肝及肿瘤等严重威胁着人们的健康,然而对这些疾病还缺乏有效而可靠的治疗药物和防治方法。近年来为寻找选择性抑制病毒的药物,对病毒的复制规律及其宿主核酸代谢的差异发现,某些核酸代谢的桔抗物的抗菌素能与核酸或核酸合成有关的酶结合,从而抑制核酸的合成。其中有些可作为抗病毒和抗肿瘤药物,而在临床上得到广泛应用,对病毒和癌细胞化疗的研究有着重要的启示,也给患者带来了极大的希望。根据核酸合成的抑制物的结构和作用不同,可分为以下几类:(1)碱基类似物碱基类似物在体内作用主要有两方面…  相似文献   

10.
《生物技术世界》2009,(4):74-74
日本研究人员日前开发出一种人造核酸,它能够标识拥有特定碱基序列的核酸。借助这样的人造核酸,研究人员观测到了活细胞中RNA(核糖核酸)的活动情况。  相似文献   

11.
A complex between the single-stranded DNA of the bacteriophage M13 and the histone octamer was analyzed by electron microscopy, low-angle X-ray diffraction and nuclease analysis. The morphology and the diffraction pattern of the complex strongly resemble those of the nucleosome. These results, as well as the finding of a protected DNA fragment about 100 nucleotides long following single-stranded DNA specific nuclease digestion, indicate that 'a nucleosome-like' complex can be formed between single-stranded DNA and the histone octamer. Competition experiments suggest that under physiological conditions the histone octamer is transferred from single- to double-stranded DNA.  相似文献   

12.
Summary From recombination-proficient competent cells of Bacillus subtilis in which the donor DNA entered at 17°, and which were kept at the same temperature, a complex of donor DNA and the recipient chromosome can be obtained which has a relatively high buoyant density in CsCl gradients. Exposure of the isolated complex to nuclease S1 liberates donor radioactivity. The limited biological activity of DNA re-extracted from cells attempting to recombine at 17° is decreased upon incubation with nuclease S1. If recombination is allowed to proceed at 30°, the high buoyant density of the donor-recipient complex decreases to normal values and less radioactivity can be liberated from the complex by nuclease S1. Concomitantly the biological activity of re-extracted DNA becomes less vulnerable to nuclease S1 under these conditions. On the basis of these observations we assume that the intermediate complex partly consists of unpaired single-stranded donor DNA.Support for the correctness of this assumption is derived from experiments with a mutant, which is delayed in the processing of high buoyant density donor-recipient complex to normal buoyant density donor-recipient complex. This delay is reflected in the time of acquisition of resistance to nuclease S1 digestion of the isolated complex.  相似文献   

13.
The bacterial toxin ColE7 contains an H-N-H endonuclease domain (nuclease ColE7) that digests cellular DNA or RNA non-specifically in target cells, leading to cell death. In the host cell, protein Im7 forms a complex with ColE7 to inhibit its nuclease activity. Here, we present the crystal structure of the unbound nuclease ColE7 at a resolution of 2.1A. Structural comparison between the unbound and bound nuclease ColE7 in complex with Im7, suggests that Im7 is not an allosteric inhibitor that induces backbone conformational changes in nuclease ColE7, but rather one that inhibits by blocking the substrate-binding site. There were two nuclease ColE7 molecules in the P1 unit cell in crystals and they appeared as a dimer related to each other by a non-crystallographic dyad symmetry. Gel-filtration and cross-linking experiments confirmed that nuclease ColE7 indeed formed dimers in solution and that the dimeric conformation was more favored in the presence of double-stranded DNA. Structural comparison of nuclease ColE7 with the His-Cys box homing endonuclease I-PpoI further demonstrated that H-N-H motifs in dimeric nuclease ColE7 were oriented in a manner very similar to that of the betabetaalpha-fold of the active sites found in dimeric I-PpoI. A mechanism for the binding of double-stranded DNA by dimeric H-N-H nuclease ColE7 is suggested.  相似文献   

14.
The present report deals with the functional relationships among protein complexes which, when mutated, are responsible for four human syndromes displaying cancer proneness, and whose cells are deficient in DNA double-strand break (DSB) repair. In some of them, the cells are also unable to activate the proper checkpoint, while in the others an unduly override of the checkpoint-induced arrest occurs. As a consequence, all these patients display genome instability. In ataxia-telangiectasia, the mutated protein (ATM) is a kinase, which acts as a transducer of DNA damage signalling. The defective protein in the ataxia-telangiectasia-like disorder is a DNase (the Mre11 nuclease) that in vivo produces single-strand tails at both sides of DSBs. Mre11 is always present with the Rad50 ATPase in a protein machine: the nuclease complex. In mammals, this complex also contains nibrin, the protein mutated in the Nijmegen syndrome. Nibrin confers new abilities to the nuclease complex, and can also bind to BRCA1 (one of the two proteins mutated in familial breast cancer). BRCA1 has a central motif that binds with high affinity to cruciform DNA, a structure present in places where the DNA loops are anchored to the chromosomal axis or scaffold. The BRCA1 x cruciform DNA complex should be released to allow the nuclease complex to work in DNA recombinational repair of DSBs. BRCA1 also acts as a scaffold for the assembly of ATPases such as Rad51, responsible for the somatic homologous recombination. Loss of the BRCA1 gene prevents cell survival after exposure to cross-linkers. The BRCA1-RING domain is an E3-ubiquitin ligase. It can mono-ubiquitinate the FANCD2 protein, mutated in one of the Fanconi anemia complementation groups, to regulate it. Finally, during DNA replication, the nuclease complex and its activating ATM kinase are integrated in the BRCA1-associated surveillance complex (BASC) that contains, among others, enzymes required for mismatch excision repair. In short, the proteins missing in these syndromes have in common their BRCA1-mediated assembly into multimeric machines responsible for the surveillance of DNA replication, DSB recombinational repair, and the removal of DNA cross-links.  相似文献   

15.
SV40 DNA FO I is randomly cleaved by S1 nuclease both at moderate (50 mM) and higher salt concentrations (250 mM NaC1). Full length linear S1 cleavage products of SV40 DNA when digested with various restriction endonucleases revealed fragments that were electrophoretically indistinguishable from the products found after digestion of superhelical SV40 DNA FO I with the corresponding enzyme. Concordingly, when the linear S1 generated duplexes were melted and renatured, circular duplexes were formed in addition to complex larger structures. This indicated that cleavage must have occurred at different sites. The double-strand-cleaving activity present in S1 nuclease preparations requires circular DNA as a substrate, as linear SV40 DNA is not cleaved. With regard to these properties S1 nuclease resembles some of the complex type I restriction nucleases from Escherichia coli which also cleave SV40 DNA only once, and, completely at random.  相似文献   

16.
Functional interactions between Sae2 and the Mre11 complex   总被引:1,自引:0,他引:1       下载免费PDF全文
The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 complex (TM) pathway. We demonstrate that SAE2 overexpression blocks the TM pathway, suggesting that Sae2 antagonizes Mre11-complex checkpoint functions. To understand how Sae2 regulates the Mre11 complex, we screened for sae2 alleles that behaved as the null with respect to Mre11-complex checkpoint functions, but left nuclease function intact. Phenotypic characterization of these sae2 alleles suggests that Sae2 functions as a multimer and influences the substrate specificity of the Mre11 nuclease. We show that Sae2 oligomerizes independently of DNA damage and that oligomerization is required for its regulatory influence on the Mre11 nuclease and checkpoint functions.  相似文献   

17.
A 75,000-dalton protein complex purified from membranes of competent Bacillus subtilis cells was previously shown to be involved in both binding and entry of donor DNA during transformation. The complex, consisting of two polypeptides, a and b, in approximately equal amounts, showed strong DNA binding as well as nuclease activity (H. Smith, K. Wiersma, S. Bron, and G. Venema, J. Bacteriol. 156:101-108, 1983). In the present experiments, peptide mapping indicated that the two polypeptides are not related. Chromatography on benzoylated, naphthoylated DEAE-cellulose showed that polypeptide b generated single-stranded regions in double-stranded DNA. A considerable amount of the DNA was rendered acid soluble by polypeptide b. The nuclease activity of polypeptide b was reduced in the presence of polypeptide a. This resulted in an increased fraction of high-molecular-weight double-stranded DNA containing single-stranded regions. The acid-soluble DNA degradation products formed by polypeptide b consisted exclusively of oligonucleotides. In contrast to its nuclease activity, which was specifically directed toward double-stranded DNA, the DNA binding of the native 75,000-dalton complex to single-stranded DNA was at least as efficient as to double-stranded DNA.  相似文献   

18.
Krogh BO  Llorente B  Lam A  Symington LS 《Genetics》2005,171(4):1561-1570
The Mre11-Rad50-Xrs2 complex is involved in DNA double-strand break repair, telomere maintenance, and the intra-S phase checkpoint. The Mre11 subunit has nuclease activity in vitro, but the role of the nuclease in DNA repair and telomere maintenance remains controversial. We generated six mre11 alleles with substitutions of conserved residues within the Mre11-phosphoesterase motifs and compared the phenotypes conferred, as well as exonuclease activity and complex formation, by the mutant proteins. Substitutions of Asp16 conferred the most severe DNA repair and telomere length defects. Interactions between Mre11-D16A or Mre11-D16N and Rad50 or Xrs2 were severely compromised, whereas the mre11 alleles with greater DNA repair proficiency also exhibited stable complex formation. At all of the targeted residues, alanine substitution resulted in a more severe defect in DNA repair compared to the more conservative asparagine substitutions, but all of the mutant proteins exhibited <2% of the exonuclease activity observed for wild-type Mre11. Our results show that the structural integrity of the Mre11-Rad50-Xrs2 complex is more important than the catalytic activity of the Mre11 nuclease for the overall functions of the complex in vegetative cells.  相似文献   

19.
Apostolou E  Thanos D 《Cell》2008,135(1):85-96
The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from the absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology-directed double-strand-break repair and a contributing role in activating the ATR kinase. However, the nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair, distinct from MRN control of ATM signaling.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) DNA replication intermediates exist in a complex nonlinear structure that does not migrate into a pulsed-field gel. Genetic evidence suggests that the product of the UL12 gene, termed alkaline nuclease, plays a role in processing replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, J. Virol. 70:2075–2085, 1996). In this study we have tested the hypothesis that alkaline nuclease acts as a structure-specific resolvase. Cruciform structures generated with oligonucleotides were treated with purified alkaline nuclease; however, instead of being resolved into linear duplexes as would be expected of a resolvase activity, the artificial cruciforms were degraded. DNA replication intermediates were isolated from the well of a pulsed-field gel (“well DNA”) and treated with purified HSV-1 alkaline nuclease. Although alkaline nuclease can degrade virion DNA to completion, digestion of well DNA results in a smaller-than-unit-length product that migrates as a heterogeneous smear; this product is resistant to further digestion by alkaline nuclease. The smaller-than-unit-length products are representative of the entire HSV genome, indicating that alkaline nuclease is not inhibited at specific sequences. To further probe the structure of replicating DNA, well DNA was treated with various known nucleases; our results indicate that replicating DNA apparently contains no accessible double-stranded ends but does contain nicks and gaps. Our data suggest that UL12 functions at nicks and gaps in replicating DNA to correctly repair or process the replicating genome into a form suitable for encapsidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号