共查询到20条相似文献,搜索用时 62 毫秒
1.
通过农杆菌介导法将拟南芥液泡膜Na+/H+反向转运蛋白基因AtNHX1转入荞麦中,在2.0mg/L 6-BA、0.1mg/L IAA、1mg/L KT、50mg/L卡那霉素和500mg/L头孢霉素的MS培养基上进行选择培养,从来源于864块外植体的36块抗性愈伤组织中共获得426棵再生植株(转化频率为4.17%)。经PCR、Southern印迹分析、RT-PCR和Northern检测,初步证实AtNHX1基因已整合至荞麦基因组中。用200mmol/L的盐水对转基因植株和对照植株进行胁迫处理6周,转基因植株能够生存,而对照植株死亡。用不同浓度的NaCl溶液处理转基因植株和对照植株,发现Na+及脯氨酸含量在转基因植株中的积累水平显著高于对照植株,而K+的含量在转基因植株中的积累水平低于对照植株。次生代谢产物黄酮类化合物芦丁在转基因植株根、茎和叶片中的含量也比对照植株明显要高。这些结果表明利用基因工程手段提高作物的耐盐性是可行的。 相似文献
2.
通过农杆菌介导法将拟南芥液泡膜Na+/H+反向转运蛋白基因AtNHX1转入荞麦中,在2.0mg/L 6-BA、0.1mg/L IAA、1mg/L KT、50mg/L卡那霉素和500mg/L头孢霉素的MS培养基上进行选择培养,从来源于864块外植体的36块抗性愈伤组织中共获得426棵再生植株(转化频率为4.17%)。经PCR、Southern印迹分析、RT-PCR和Northern检测,初步证实AtNHX1基因已整合至荞麦基因组中。用200mmol/L的盐水对转基因植株和对照植株进行胁迫处理6周,转基因植株能够生存,而对照植株死亡。用不同浓度的NaCl溶液处理转基因植株和对照植株,发现Na+及脯氨酸含量在转基因植株中的积累水平显著高于对照植株,而K+的含量在转基因植株中的积累水平低于对照植株。次生代谢产物黄酮类化合物芦丁在转基因植株根、茎和叶片中的含量也比对照植株明显要高。这些结果表明利用基因工程手段提高作物的耐盐性是可行的。 相似文献
3.
Zn2+在遗传调控中的作用十分广泛而显著.结合新近的研究资料,着重从染色质结构与功能、核酸的生物合成、DNA的结构及构象、基因表达的调控等四个主要方面来反映Zn2+与遗传调控的相关性,并阐述Zn2+在其中发挥作用的机理. 相似文献
4.
在大肠杆菌中表达了人肾液泡型H+-ATPase 58kD亚基的基因,利用聚合酶链式反应(PCR)得到了58kD亚基的编码片段.直接将PCR产物连接到PET载体上表达.SDS聚丙烯酰胺凝胶电泳和蛋白质印迹分析表明58kD亚基的基因得到高效表达.表达产物可达细菌细胞质蛋白的50%. 相似文献
5.
以原代培养的大鼠前脂细胞为模型 ,以 2′ ,7′ bis ( 2 carboxyethyl) 5 ( 6 ) carboxyfluorescein (BCECF)作为检测胞内pH(pHi)的荧光探针 ,测定不同生长因子刺激下胞内pH的变化 ,证明大鼠肾周前脂细胞质膜存在Na+/H+交换活性 ,胎牛血清(FCS)能快速激活Na+/H+交换 ,导致pHi升高 (约 0 .2pH单位 ) ,并引起DNA合成 .Ethyl isopropyl amiloride (EIPA)抑制Na+/H+交换与DNA合成 .在无血清条件下 ,胰岛素不刺激DNA合成但引起细胞分化 ,表现为胞内脂滴积累和 3 磷酸 甘油脱氢酶(G3 PDH酶 )活性增强 ,同时激活Na+/H+交换活性导致pHi升高 ;EIPA既抑制胰岛素对Na+/H+交换的激活 ,也抑制G3 PDH酶活性增强 .结果证明 :Na+/H+交换的激活不仅与大鼠前脂细胞增殖相关 ,同时也是细胞分化的早期事件 . 相似文献
6.
揭示了吖啶橙的吸收光谱和荧光光谱对其浓度依赖性上的区域性特征,分析了测定溶酶体H+转运时合理选用吖啶橙浓度及溶酶体用量的重要性、机理和原则,探讨了其与溶酶体的温育时间和K+/H+交换对测定H+转运的明显影响. 相似文献
7.
为研究苦荞黄酮转运相关基因,以苦荞(Fagopyrum tataricum)品种\"西荞二号\"为材料,克隆到1条质膜H+-ATPase基因(autoinhibited H+-ATPase isoform 4 like,AH4L),将其命名为FtAH4L。通过开放阅读框(ORF)分析,FtAH4L基因cDNA全长3 398bp,开放阅读框2 898bp,编码966个氨基酸残基,理论分子量为109kD,等电点6.48。氨基酸保守基序比对分析表明,AH4L在植物种间较为保守。在茉莉素诱导处理和5种光(白色荧光、LED白光、LED蓝光、LED红光和UV-B)处理芽期苦荞后,采用半定量RT-PCR和AlCl3比色法分析结果表明,茉莉素处理后的苦荞胚轴和子叶中FtAH4L基因表达量与黄酮含量均显著上升,且二者呈正相关关系;5种光对子叶中FtAH4L表达量无显著影响,但均显著增加其黄酮含量;胚轴中,除LED红光外,各种光均显著提高FtAH4L表达量和总黄酮含量,且LED蓝光与UV-B的影响极显著。该研究结果为深入研究FtAH4L基因参与苦荞黄酮转运奠定了基础。 相似文献
8.
用Dextran T-500, PEG 3350两相分配法分离并纯化了悬浮培养的胡杨细胞质膜.不同聚合物浓度(5.5%、5.7%、5.9%、6.1%、6.3%、6.5%)和KCl浓度(0、5、10、15 mmol/L)对分离效果影响的研究结果表明, 采用聚合物浓度为5.9%和无盐存在的两相分配体系可获得纯度较高的胡杨细胞质膜.纯化的质膜H+-ATPase的活力提高8倍,且酶定向程度较高,这为进一步研究胡杨细胞质膜特性及获得高纯度H+-ATPase提供了良好基础. 相似文献
9.
10.
采用同源克隆技术分离了西伯利亚白刺(Nitraria sibirica)质膜Na~+/H~+逆向转运蛋白基因NsSOS1,并对其在不同胁迫条件下的表达特性进行了分析。NsSOS1包含3 516bp开放阅读框(ORF),编码1 171个氨基酸,蛋白分子量为128.34kD。生物信息学分析显示,NsSOS1包含12个跨膜结构域,具有植物SOS1蛋白的保守结构域。系统发育分析表明,NsSOS1与其他植物质膜Na~+/H~+逆向转运蛋白处于同一个次级分化群,与锦葵科海滨锦葵KvSOS1亲缘关系较近。实时荧光定量RT-PCR分析显示,NsSOS1基因在西伯利亚白刺的根和叶中表达量较高;其表达受到非生物胁迫(NaCl、低温、干旱)和外源激素(MeJA和GA)的诱导,表明NsSOS1基因在西伯利亚白刺抵御逆境胁迫过程中发挥重要作用。 相似文献
11.
Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B
Hayashi H Szászi K Coady-Osberg N Furuya W Bretscher AP Orlowski J Grinstein S 《The Journal of general physiology》2004,123(5):491-504
NHE3, the apical isoform of the Na(+)/H(+) exchanger, is central to the absorption of salt and water across the intestinal epithelium. We report that treatment of epithelial cells with toxin B of Clostridium difficile, a diarrheal pathogen, causes a pronounced inhibition of NHE3 activity, with little effect on the basolateral NHE1 isoform. Depression of NHE3 activity is accompanied by the translocation of apical exchangers to a subapical endomembrane compartment. Treatment of cells with toxin B increased the fraction of exchangers that were solubilized by nonionic detergents and induced dephosphorylation and extensive redistribution of ezrin. The Rho-kinase inhibitor, Y-27632, also altered the distribution and activity of NHE3. We suggest that inactivation of Rho-family GTPases by clostridial toxin B alters the interaction between NHE3 and the microvillar cytoskeleton, possibly by impairing the ability of ezrin to bridge the exchangers to filamentous actin. Detachment of NHE3 from the actin skeleton would facilitate its internalization, resulting in net disappearance from the apical surface. The consequent inhibition of transport is likely to contribute to the diarrheal effects of C. difficile. 相似文献
12.
Amiloride and its analogs as tools in the study of ion transport 总被引:23,自引:0,他引:23
Amiloride inhibits most plasma membrane Na+ transport systems. We have reviewed the pharmacology of inhibition of these transporters by amiloride and its analogs. Thorough studies of the Na+ channel, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger, clearly show that appropriate modification of the structure of amiloride will generate analogs with increased affinity and specificity for a particular transport system. Introduction of hydrophobic substituents on the terminal nitrogen of the guanidino moiety enhances activity against the Na+ channel; whereas addition of hydrophobic (or hydrophilic) groups on the 5-amino moiety enhances activity against the Na+/H+ exchanger. Activity against the Na+/Ca2+ exchanger and Ca2+ channel is increased with hydrophobic substituents at either of these sites. Appropriate modification of amiloride has produced analogs that are several hundred-fold more active than amiloride against specific transporters. The availability of radioactive and photoactive amiloride analogs, anti-amiloride antibodies, and analogs coupled to support matrices should prove useful in future studies of amiloride-sensitive transport systems. The use of amiloride and its analogs in the study of ion transport requires a knowledge of the pharmacology of inhibition of transport proteins, as well as effects on enzymes, receptors, and other cellular processes, such as DNA, RNA, and protein synthesis, and cellular metabolism. One must consider whether the effects seen on various cellular processes are direct or due to a cascade of events triggered by an effect on an ion transport system. 相似文献
13.
以盐桦组培苗为材料,通过RACE技术克隆了液泡膜Na /H 反向运输体基因BhNHX,采用DNAman软件和BLASTN对cDNA序列进行分析并与其他植物的NHX基因进行同源性比较,最后对BhNHX和钙调蛋白基因(CaM)在各种胁迫条件下的协同表达进行半定量的RT-PCR分析.结果显示:(1)获得了BhNHX的全长cDNA序列,包含1 623 bp的开放阅读框架,编码一个540个氨基酸的多肽,有11个推测跨膜区,与已报道的液泡膜Na /H 反向运输载体蛋白跨膜区数目一致;(2)BhNHX的核酸序列与其他植物NHX具有较高同源性,与葡萄NHX序列一致性达到76%;(3)BhNHX和钙调蛋白基因CaM可同时被盐、低温、干旱所诱导;但ABA只能较明显诱导BhNHX的表达,而对CaM的诱导表达不明显.研究表明,在盐桦受到盐、低温及干旱胁迫时BhNHX和CaM可能协同表达,而在ABA诱导时两者可能具有不同的表达调控模式. 相似文献
14.
Alexander RT Jaumouillé V Yeung T Furuya W Peltekova I Boucher A Zasloff M Orlowski J Grinstein S 《The EMBO journal》2011,30(4):679-691
The Na(+)/H(+) exchanger NHE3 plays a central role in intravascular volume and acid-base homeostasis. Ion exchange activity is conferred by its transmembrane domain, while regulation of the rate of transport by a variety of stimuli is dependent on its cytosolic C-terminal region. Liposome- and cell-based assays employing synthetic or recombinant segments of the cytosolic tail demonstrated preferential association with anionic membranes, which was abrogated by perturbations that interfere with electrostatic interactions. Resonance energy transfer measurements indicated that segments of the C-terminal domain approach the bilayer. In intact cells, neutralization of basic residues in the cytosolic tail by mutagenesis or disruption of electrostatic interactions inhibited Na(+)/H(+) exchange activity. An electrostatic switch model is proposed to account for multiple aspects of the regulation of NHE3 activity. 相似文献
15.
Lawrence G. Palmer 《The Journal of membrane biology》1985,83(1-2):57-69
Summary The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basallateral Na pump with ouabain. With high Na activity in the mucosal medium (86mm), increases in intracellular Na activity from 10 to over 40mm increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1mm had no effect on the change inP
Na with increasing Nac, but increasing serosal Ca to 5mm enhanced the reduction inP
Na with increasing Na
c
, presumably by increasing Ca influx into the cell.P
Na was also reduced by serosal vanadate (0.5mm), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloridesensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of theI-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions onP
Na are voltage independent. 相似文献
16.
在血清饥饿条件下CHP2调节NHE活性减少细胞死亡 总被引:1,自引:0,他引:1
钠氢离子交换蛋白(NHE)是维持细胞内pH值等内环境稳定的重要蛋白;钙调磷酸酶B同源蛋白(CHP)是NHE的一个活性调节亚单位。研究CHP2对NHE1的调节作用时发现,在血清饥饿的条件下,PS120细胞依赖于CHP2的表达来调节外源性NHE1的活性,使细胞维持必要的钠氢交换生理活性和较高水平的细胞内pH值(pHi 7.4),明显减少细胞因自身的胞浆酸性化而死亡,延长细胞存活时间(70%以上的细胞存活时间超过7天)。实验结果提示,通过研究减少CHP2表达或抑制其活性,可望找到加速细胞死亡的新方法。 相似文献
17.
The effect of anoxia on Na+/H+ exchange activity was examined in acutely isolated adult rat hippocampal CA1 neurons loaded with the H+-sensitive fluorophore, BCECF. Five-minute anoxia imposed under nominally HCO3-/CO2-free conditions induced a fall in pHi, the magnitude of which was smaller following prolonged exposure to medium in which N-methyl-D-glucamine (NMDG+) was employed as an extracellular Na+ (Na(+)(o)) substitute. Also consistent with the possibility that Na+/H+ exchange becomes inhibited soon after the induction of anoxia, rates of Na(+)(o)-dependent pHi recovery from internal acid loads imposed during anoxia were slowed, compared to rates of Na(+)(o)-dependent pHi recovery observed prior to anoxia. At the time at which rates of pHi recovery were reduced during anoxia, cellular adenosine triphosphate (ATP) levels had fallen to 35% of preanoxic levels, suggesting that ATP depletion might contribute to the observed inhibition of Na+/H+ exchange. In support, incubation of neurons with 2-deoxyglucose and antimycin A under normoxic conditions induced a fall in cellular ATP levels that was also associated with reduced Na(+)(o)-dependent rates of pHi recovery from imposed acid loads; conversely, pre-treatment with 10 mm creatine attenuated the effects of anoxia to reduce both ATP levels and Na(+)(o)-dependent rates of pHi recovery from internal acid loads. Taken together, the results are consistent with the possibility that functional Na+/H+ exchange activity in adult rat CA1 neurons declines soon after the onset of anoxia, possibly as a result of anoxia-induced falls in intracellular ATP. 相似文献
18.
Kristine Glunde Heiko Düßmann † Hans-Paul Juretschke‡ Dieter Leibfritz 《Journal of neurochemistry》2002,80(1):36-44
Lactacidosis is a common feature of ischaemic brain tissue, but its role in ischaemic neuropathology is still not fully understood. Na(+)/H(+) exchange, a mechanism involved in the regulation of intracellular pH (pH(i)), is activated by low pH(i). The role of Na(+)/H(+) exchange subtype 1 was investigated during extracellular acidification and subsequent pH recovery in the absence and presence of (4-isopropyl-3-methylsulphonyl-benzoyl)-guanidine methanesulfonate (HOE642, Cariporid), a new selective and powerful inhibitor of the Na(+)/H(+) exchanger subtype 1 (NHE-1). It was compared for normoxia and hypoxia in two glioma cell lines (C6 and F98). pH(i) was monitored by fluorescence spectroscopy using the intracellularly trapped pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Alterations in glial cell metabolism were characterized using high-resolution (1)H, (13)C and (31)P NMR spectroscopy of perchloric acid extracts. NHE-1 contributed to glial pH regulation, especially at pathologically low pH(i) values. NHE-1 inhibition with HOE642 during acidification caused exacerbated metabolic disorders which were prolonged during extracellular pH recovery. However, NHE-1 inhibition during hypoxia protected the energy state of glial cells. 相似文献
19.
Jin W Li Q Wang J Chang G Lin Y Li H Wang L Gao W Pang T 《Cell biology international》2012,36(8):739-745
The effect of hypoxia on the differentiation of chronic myeloid leukaemic K562 cells were studied, as was the role of the NHE1 (Na+/H+ exchanger 1). Hypoxia induced differentiation of K562 cells as seen by modifications in their morphological features, up-regulation of C/EBPα (CCAAT/enhancer-binding protein α), and marked IL-8 (interleukin-8) release. Inhibition of NHE1 under hypoxia additionally enhanced the level of C/EBPα and further promoted leukaemic cells differentiation. Pharmacological inhibition of p38 MAPK (mitogen-activated protein kinase) also significantly suppressed C/EBPα expression under hypoxia conditions after NHE1 inhibition. These results indicate the enhancement of hypoxia-induced K562 differentiation by NHE1 inhibition, which may be due to up-regulation of C/EBPα via p38 MAPK signalling pathway, which suggests a possible therapeutic target of NHE1 under hypoxia microenvironment in the treatment of leukaemic diseases. 相似文献
20.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Nao+/Hi+ and Nai+/Ho+ exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Nao+/Hi+ exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05. 相似文献