首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two different responses to the therapy were observed in a group of patients receiving the protease inhibitor indinavir. In one, suppression of virus replication occurred and has persisted for 90 weeks (bDNA, < 500 human immunodeficiency virus type 1 [HIV-1] RNA copies/ml). In the second group, a rebound in virus levels in plasma followed the initial sharp decline observed at the start of therapy. This was associated with the emergence of drug-resistant variants. Sequence analysis of the protease gene during the course of therapy revealed that in this second group there was a sequential acquisition of protease mutations at amino acids 46, 82, 54, 71, 89, and 90. In the six patients in this group, there was also an identical mutation in the gag p7/p1 gag protease cleavage site. In three of the patients, this change was seen as early as 6 to 10 weeks after the start of therapy. In one patient, a second mutation occurred at the gag p1/p6 cleavage site, but it appeared 18 weeks after the time of appearance of the p7/p1 mutation. Recombinant HIV-1 variants containing two or three mutations in the protease gene were constructed either with mutations at the p7/p1 cleavage site or with wild-type (WT) gag sequences. When recombinant HIV-1-containing protease mutations at 46 and 82 was grown in MT2 cells, there was a 68% reduction in its rate of replication compared to the WT virus. Introduction of an additional mutation at the gag p7/p1 protease cleavage site compensated for the partially defective protease gene. Similarly, rates of replication of viruses with mutations M46L/I, I54V, and V82A in protease were enhanced both in the presence and in the absence of Indinavir when combined with mutations in the gag p7/p1 and the gag p1/p6 cleavage sites. Optimal rates of virus replication require protease cleavage of precursor polyproteins. A mutation in the cleavage site that enhanced the availability of a protein that was rate limiting for virus maturation would confer on that virus a significant growth advantage and may explain the uniform emergence of viruses with alterations at the p7/p1 cleavage site. This is the first report of the emergence of mutations in the gag p7/p1 protease cleavage sites in patients receiving protease therapy and identifies this change as an important determinant of HIV-1 resistance to protease inhibitors in patient populations.  相似文献   

2.
Cytolytic T lymphocytes (CTL) play a major role in controlling human immunodeficiency virus type 1 (HIV-1) infection. To evade immune pressure, HIV-1 is selected at targeted CTL epitopes, which may consequentially alter viral replication fitness. In our longitudinal investigations of the interplay between T-cell immunity and viral evolution following acute HIV-1 infection, we observed in a treatment-naïve patient the emergence of highly avid, gamma interferon-secreting, CD8+ CTL recognizing an HLA-Cw*0102-restricted epitope, NSPTRREL (NL8). This epitope lies in the p6Pol protein, located in the transframe region of the Gag-Pol polyprotein. Over the course of infection, an unusual viral escape mutation arose within the p6Pol epitope through insertion of a 3-amino-acid repeat, NSPT(SPT)RREL, with a concomitant insertion in the p6Gag late domain, PTAPP(APP). Interestingly, this p6Pol insertion mutation is often selected in viruses with the emergence of antiretroviral drug resistance, while the p6Gag late-domain PTAPP motif binds Tsg101 to permit viral budding. These results are the first to demonstrate viral evasion of immune pressure by amino acid insertions. Moreover, this escape mutation represents a novel mechanism whereby HIV-1 can alter its sequence within both the Gag and Pol proteins with potential functional consequences for viral replication and budding.  相似文献   

3.
To evaluate human immunodeficiency virus type 1 (HIV-1) replication and selection of drug-resistant viruses during seemingly effective highly active antiretroviral therapy (HAART), multiple HIV-1 env and pol sequences were analyzed and viral DNA levels were quantified from nucleoside analog-experienced children prior to and during a median of 5.1 (range, 1.8 to 6.4) years of HAART. Viral replication was detected at different rates, with apparently increasing sensitivity: 1 of 10 by phylogenetic analysis; 2 of 10 by viral evolution with increasing genetic distances from the most recent common ancestor (MRCA) of infection; 3 of 10 by selection of drug-resistant mutants; and 6 of 10 by maintenance of genetic distances from the MRCA. When four- or five-drug antiretroviral regimens were given to these children, persistent plasma viral rebound did not occur despite the accumulation of highly drug-resistant genotypes. Among the four children without genetic evidence of viral replication, a statistically significant decrease in the genetic distance to the MRCA was detected in three, indicating the persistence of a greater number of early compared to recent viruses, and their HIV-1 DNA decreased by > or =0.9 log(10), resulting in lower absolute DNA levels (P = 0.007). This study demonstrates the variable rates of viral replication when HAART has suppressed plasma HIV-1 RNA for years to a median of <50 copies/ml and that combinations of four or five antiretroviral drugs suppress viral replication even after short-term virologic failure of three-drug HAART and despite ongoing accumulation of drug-resistant mutants. Furthermore, the decrease of cellular HIV-1 DNA to low absolute levels in those without genetic evidence of viral replication suggests that monitoring viral DNA during HAART may gauge low-level replication.  相似文献   

4.
A latent reservoir for human immunodeficiency virus type 1 (HIV-1) consisting of integrated provirus in resting memory CD4+ T cells prevents viral eradication in patients on highly active antiretroviral therapy (HAART). It is difficult to analyze the nature and dynamics of this reservoir in untreated patients and in patients failing therapy, because it is obscured by an excess of unintegrated viral DNA that constitutes the majority of viral species in resting CD4+ T cells from viremic patients. Therefore, we developed a novel culture assay that stimulates virus production from latent, integrated HIV-1 in resting CD4+ T cells in the presence of antiretroviral drugs that prevent the replication of unintegrated virus. Following activation, resting CD4+ T cells with integrated HIV-1 DNA produced virus particles for several days, with peak production at day 5. Using this assay, HIV-1 pol sequences from the resting CD4+ T cells of viremic patients were found to be genetically distinct from contemporaneous plasma virus. Despite the predominance of a relatively homogeneous population of drug-resistant viruses in the plasma of patients failing HAART, resting CD4+ T cells harbored a diverse array of wild-type and archival drug-resistant viruses that were less fit than plasma virus in the context of current therapy. These results provide the first direct evidence that resting CD4+ T cells serve as a stable reservoir for HIV-1 even in the setting of high levels of viremia. The ability to analyze archival species in viremic patients may have clinical utility in detecting drug-resistant variants not present in the plasma.  相似文献   

5.
HIV-1 protease (PR) is encoded by pol, which is initially translated as a Pr160gag-pol polyprotein by a ribosomal frameshift event. Within Gag-Pol, truncated p6gag is replaced by a transframe domain (referred to as p6* or p6pol) located directly upstream of PR. p6* has been proposed as playing a role in modulating PR activation. Overlapping reading frames between p6* and p6gag present a challenge to researchers using genetic approaches to studying p6* biological functions. To determine the role of p6* in PR activation without affecting the gag reading frame, we constructed a series of Gag/Gag-Pol expression vectors by duplicating PR with or without p6* between PR pairs, and observed that PR duplication eliminated virus production due to significant Gag cleavage enhancement. This effect was mitigated when p6* was placed between the two PRs. Further, Gag cleavage enhancement was markedly reduced when either one of the two PRs was mutationally inactivated. Additional reduction in Gag cleavage efficiency was noted following the removal of p6* from between the two PRs. The insertion of a NC domain (wild-type or mutant) directly upstream of PR or p6*PR did not significantly improve Gag processing efficiency. With the exception of those containing p6* directly upstream of an active PR, all constructs were either noninfectious or weakly infectious. Our results suggest that (a) p6* is essential for triggering PR activation, (b) p6* has a role in preventing premature virus processing, and (c) the NC domain within Gag-Pol is not a major determinant of PR activation.  相似文献   

6.
Vpr is a small accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is specifically incorporated into virions. Members of the HIV-2/SIV(sm)/SIV(mac) lineage of primate lentiviruses also incorporate a related protein designated Vpx. We previously identified a highly conserved L-X-X-L-F sequence near the C terminus of the p6 domain of the Gag precursor as the major virion association motif for HIV-1 Vpr. In the present study, we show that a different leucine-containing motif (D-X-A-X-X-L-L) in the N-terminal half of p6(gag) is required for the incorporation of SIV(mac) Vpx. Similarly, the uptake of SIV(mac) Vpr depended primarily on the D-X-A-X-X-L-L motif. SIV(mac) Vpr was unstable when expressed alone, but its intracellular steady-state levels increased significantly in the presence of wild-type Gag or of the proteasome inhibitor lactacystin. Collectively, our results indicate that the interaction with the Gag precursor via the D-X-A-X-X-L-L motif diverts SIV(mac) Vpr away from the proteasome-degradative pathway. While absent from HIV-1 p6(gag), the D-X-A-X-X-L-L motif is conserved in both the HIV-2/SIV(sm)/SIV(mac) and SIV(agm) lineages of primate lentiviruses. We found that the incorporation of SIV(agm) Vpr, like that of SIV(mac) Vpx, is absolutely dependent on the D-X-A-X-X-L-L motif, while the L-X-X-L-F motif used by HIV-1 Vpr is dispensable. The similar requirements for the incorporation of SIV(mac) Vpx and SIV(agm) Vpr provide support for their proposed common ancestry.  相似文献   

7.
In the present study, we performed genotypic drug-resistance testing in 116 therapy-naive human immunodeficiency virus type 1 (HIV-1)-infected patients between 1999 and 2002 at Nagoya National Hospital, Japan. The prevalence of drug-resistant HIV-1 with one or more major mutations significantly increased from 5.3% (4/75) in 1999-2001 to 17.1% (7/41) in 2002 (P=0.05), suggesting the spread of drug-resistant HIV-1. We identified a patient who possessed a protease (PR) inhibitor-resistant HIV-1 with a major mutation consisting of L90M before the initiation of therapy. The patient was administered zidovudine, lamivudine, and efavirenz as highly active antiretroviral therapy (HAART), as PR inhibitors were excluded based on the result of the drug-resistance testing. The treatment succeeded in strongly suppressing the proliferation of drug-resistant HIV-1 and concomitantly increased CD4 cell counts. Thus, we conclude that drug-resistance testing prior to the initiation of therapy is important for therapy-naive patients to devise the optimum therapy regimen for each individual.  相似文献   

8.
9.
We have examined cross-clade HIV-specific cytotoxic T-lymphocyte (CTL) activity in peripheral blood of eight Zambian individuals infected with non-B-clade human immunodeficiency virus type 1 (HIV-1). Heteroduplex mobility assay and partial sequence analysis of env and gag genes strongly suggests that all the HIV-infected subjects were infected with clade C HIV-1. Six of eight C-clade HIV-infected individuals elicited CTL activity specific for recombinant vaccinia virus-infected autologous targets expressing HIV gag-pol-env derived from B-clade HIV-1 (IIIB). Recognition of individual recombinant HIV-1 B-clade vaccinia virus-infected targets expressing gag, pol, or env was variable among the patients tested, indicating that cross-clade CTL activity is not limited to a single HIV protein. These data demonstrate that HIV clade C-infected individuals can mount vigorous HIV clade B-reactive CTL responses.  相似文献   

10.
11.
The existence of organ-specific human immunodeficiency virus type 1 (HIV-1) populations within infected hosts has been long lasting studied. Previous work established that population subdivision by organs occurs at the envelope env gene, but less is known about other genomic regions. Here, we used a population genetics approach to detect organ compartmentalization in proviral sequences of HIV-1 gag and pol genes. Significant population structure was found in pol (100% of cases) and gag (33%) pair-wise organ comparisons. The degree of compartmentalization positively correlated with the ratio of nonsynonymous to synonymous substitutions, and codons showing organ compartmentalization were more likely to be under significantly positive selection. This suggests that HIV-1 populations dynamically adapt to locally variable intra-host environments. In the case of pol gene, differential penetration of antiretroviral drugs might account for the observed pattern, whereas for gag gene, local selective pressures remain unexplored.  相似文献   

12.
Our previous study suggested that the p2(gag) peptide, AEAMSQVTNTATIM, inhibits human immunodeficiency virus type 1 (HIV-1) protease (PR) activity in vitro. In this study, Ala substitutions (Met4Ala and Thr8Ala) and deletion of amino acid Asn9 within the nona p2(gag) peptide (AEAMSQVTN) were found to decrease the inhibitory effect on HIV-1 PR activity. Furthermore, treatment of PMA-activated latently infected T lymphocytes, ACH-2 cells, with the p2(gag) peptide (100 and 250 micro M) resulted in a decrease in the amount of p24(gag )in the resultant viral lysates derived from the cell-free supernatant. In addition, the HIV-1-Tat-p2(gag) fusion peptide was synthesized to effectively deliver the p2(gag) peptide into the cells. The fusion peptide was incorporated into chronically infected T lymphocytes, CEM/LAV-1 cells, as detected on indirect immunofluorescence analysis using anti-p2(gag) peptide monoclonal antibodies, which recognize the nona peptide (AEAMSQVTN) derived from the N-terminus of the p2(gag) peptide, and cleaved by HIV-1 PR in vitro. Treatment of CEM/LAV-1 cells with the fusion peptide also resulted in a decrease in the amount of p24(gag )in the resultant viral lysate derived from the cell-free supernatant. Taken together, these data suggest that the p2(gag) peptide consequently blocks the autolysis of HIV-1 virions for the conservation of viral species.  相似文献   

13.
14.
15.
Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6(gag)) exhibited moderate variation, and four sites (p2/NC, TFP/p6(pol), p6(pol)/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6(gag) is an important phosphoprotein required for virion release, and TFP/p6(pol), a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.  相似文献   

16.
Although highly active antiretroviral therapy (HAART) for human immunodeficiency virus type 1 (HIV-1) infection can reduce levels of HIV-1 RNA in plasma to below the limit of detection, replication-competent forms of the virus persist in all infected individuals. One form of persistence involves a stable reservoir of latent but potentially infectious virus that resides in resting memory CD4(+) T cells. The mechanisms involved in maintaining this latent reservoir are incompletely understood. In the present study, we examined the dynamic characteristics of this reservoir in a cohort of children who developed drug-resistant HIV-1 as a result of extensive exposure to inadequately suppressive one- or two-drug regimens prior to the advent of HAART. We have previously shown that drug-resistant viruses selected by nonsuppressive pre-HAART regimens can enter and persist in this reservoir. We have extended these findings here by demonstrating that archival wild-type HIV-1 persists in this reservoir despite the fact that in these patients drug-resistant mutants have been favored by the selective conditions for many years. Phylogenetic analysis of replication-competent viruses persisting in resting CD4(+) T cells revealed a striking lack of temporal structure in the sense that isolates obtained at later time points did not show greater sequence divergence than isolates from earlier time points. The persistence of drug-sensitive virus and the lack of temporal structure in the latent reservoir provide genetic evidence for the idea that HIV-1 can persist in a latent form free of selective pressure from antiretroviral drugs in long-lived resting memory CD4(+) T cells. Although there may be other mechanisms for viral persistence, this stable pool of latently infected cells is of significant concern because of its potential to serve as a lasting source of replication-competent viruses, including the infecting wild-type form and all drug-resistant variants that have arisen subsequently.  相似文献   

17.
18.
19.
Formation of large syncytia and rapid cell killing are characteristics of the Zairian human immunodeficiency virus type 1 isolate HIV-1-NDK, which is highly cytopathic for CD4+ lymphocytes in comparison with the HIV-1-LAV prototype. Chimeric viruses containing different combinations of HIV-1-NDK genetic determinants corresponding to the splice donor, the packaging signal, and the coding sequence of the p18gag protein together with the HIV-1-NDK EcoRI5278-XhoI8401 fragment were obtained by polymerase chain reaction-directed recombination. Phenotypic analysis of recombinant viruses indicated that 75 amino acids from the N-terminal part of HIV-1-NDK p18gag protein together with the HIV-1-NDK envelope glycoprotein are responsible for enhanced fusogenicity of HIV-1-NDK in CD4+ lymphocytes as well as for enhanced infectivity of HIV-1-NDK in some CD4- cells lines. The HIV-1-NDK splice donor/packaging sequence and the sequence encoding the gag protein p25 were not important for the variation observed in HIV-1 fusogenicity.  相似文献   

20.
Mature human immunodeficiency virus type 1 (HIV-1) virions contain a typically cone-shaped core that encases the viral genome. In this study, we established conditions which allowed the efficient isolation of morphologically intact HIV-1 cores from virions. The isolated cores consisted mostly of cones which appeared uniformly capped at both ends but were heterogeneous with respect to the shape of the broad cap as well as the dimensions and angle of the cone. Vpr, a nonstructural virion component implicated in the nuclear import of the viral genome, was recovered in core preparations of HIV-1 and simian immunodeficiency viruses from African green monkeys. Unexpectedly, p6(gag), a structural protein required for the incorporation of Vpr, was absent from HIV-1 core preparations. Taken together, our results indicate that the incorporation of Vpr into the virion core is a conserved feature of primate lentiviruses and that the interactions required for the uptake of Vpr into assembling particles differ from those which confine Vpr within the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号