首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of La3+ effect on chlorophyll (chl) of spinach in solution culture has been studied. The results show that La3+ can obviously promote growth, increase chlorophyll contents and photosynthetic rate of spinach. La3+ may substitute Mg2+ for chlorophyll formation of spinach when there is no Mg2+ in solution. La3+ improves significantly PSII formation and enhances electron transport rate of PSII. By ICP-MS and atom absorption spectroscopy methods, it has been revealed that rare earth elements (REEs) can enter chloroplasts and increase Mg2+-chl contents; and REEs bind to chlorophyll and also form REE-chl. REE-chl is about 72% in total chlorophyll with La3+ treatment and without Mg2+ in solution. By UV-Vis, FT-IR and extended X-ray absorption fine structure spectroscopy (EXAFS) methods, it has been found that La3+ coordinates with nitrogen of porphyrin rings with the average La-N bond length of 0.253 nm.  相似文献   

2.
Mechanism of lanthanum effect on chlorophyll of spinach   总被引:10,自引:0,他引:10  
The mechanism of La3+ effect on chlorophyll (chl) of spinach in solution culture has been studied. The results show that La3+ can obviously promote growth, increase chlorophyll contents and photosynthetic rate of spinach. La3+ may substitute Mg2+ for chlorophyll formation of spinach when there is no Mg2+ in solution. La3+ improves significantly PSII formation and enhances electron transport rate of PSII. By ICP-MS and atom absorption spectroscopy methods, it has been revealed that rare earth elements (REEs) can enter chloroplasts and increase Mg2+-chl contents; and REEs bind to chlorophyll and also form REE-chl. REE-chl is about 72% in total chlorophyll with La3+ treatment and without Mg2+in solution. By UV-Vis, FT-IR and extended X-ray absorption fine structure spectroscopy (EXAFS) methods, it has been found that La3+ coordinates with nitrogen of porphyrin rings with the average La-N bond length of 0.253 nm.  相似文献   

3.
The effects of lanthanum and calcium ions on electron transport, dichlorephenol indophenol (DCIP) photoreduction, and oxygen evolution activities in chloroplast from cucumber (Cucumis satives L.) were determined. The lanthanum inhibited the whole electron chain-transport activity of chloroplast. DCIP photoreduction and oxygen evolution activities of the photosystem I (PSII) also decrease after treatment with La3+. But the diminished activities of PSII and chloroplast caused by La3+ could be reversed by Ca2+ and even became higher than the control level. The concentration analysis of related protein complexes to photoelectron transport in chloroplast included that La3+ induced the concentration of chlorophyll protein complexes increasing but caused some nonchlorophyll protein complexes to decompose partially. This increasing effect of La3+ on chlorophyll protein complexes results in the improvement of chlorophyll content, which will improve the absorption of photoelectron and energy transport in the process of photosynthesis.  相似文献   

4.
Photosystem II (PSII) from Arabidopsis thaliana treated by lanthanum (La3+), cerium (Ce3+), and neodymium (Nd3+) were isolated to investigate the effects of 4f electron characteristics and alternation valence of rare earth elements (REEs) on PSII function regulation comparatively. Results showed that REE treatment could induce the generous expression of LhcII b in A. thaliana and increase the content of light-harvesting complex II and its trimer on the thylakoid membrane significantly. Meanwhile, the light absorption in the red and blue region and fluorescence quantum yield near 683 nm were obviously increased; oxygen evolution rate was greatly improved too, suggesting that REEs could enhance the efficiency of light absorption, regulate excitation energy distribution from photosystem I (PSI) to PSII, and thus increase the activity of photochemical reaction and oxygen evolution accordingly. The efficiency order of the four treatments was Ce3+ > Nd3+ > La3+ > control.  相似文献   

5.
Photosystem II (PSII) particles were purified from Eu3+-treated spinach and studied by spectroscopy. The results showed that electron transport rate of PS II was accelerated by Eu3+ treating, that violet shift of the PSII Soret band or Q-band was 6 nm or 2 nm for the ultraviolet-visible (UV-Vis) spectrum, that the violet shift of the PSII fluorescence emission peak was 9 nm for fluorescence emission spectrum, that the PSII Signal II’s of low-temperature electron paramagnetic resonance (EPR) spectrum was intensified under light, and that the PSII CD spectrum was similar to that of control. It is suggested that Eu3+ might bind to the PSII reaction center complex and enhance the electron transport rate of PSII CD; however, Eu3+ treatment does not change the configuration of the PSII reaction center complex.  相似文献   

6.
Monostroma angicava and Protomonostroma undulatum are monostromatic green benthic algae (Ulvophyceae), which grow together in the same intertidal habitat of Muroran, Hokkaido, Japan, during the spring season. Commonly, both species have a single chloroplast with one pyrenoid per cell. The parietal chloroplast is located on the periphery of the thallus in both species, although the location of the chloroplast differs in the two. In M. angicava , the chloroplast was observed to be arranged on one‐side of the thallus surface, whereas, in P. undulatum , it was dispersed and randomly located on either side of the thallus or on the lateral face. The density of chlorophylls (Chls) assessed from the absorption spectra of the thallus and its solvent extract was higher in M. angicava , which appeared dark‐green in color, than in the light‐green colored P. undulatum . The maximum photosynthetic rate per thallus area (μmol O2 m?2 s?1) was higher in M. angicava , whereas, per total chlorophyll content (μmol O2 g Chl a + Chl b ?1 s?1) was higher in P. undulatum . Both species showed similar efficiency of photosynthesis at light‐limiting conditions. The efficiency of light absorption by photosystem II (PSII ) in P. undulatum was higher than M. angicava , whereas the photoprotective response was higher in M. angicava . This indicates that more energy is utilized in M. angicava to protect its PSII due to the chloroplast position, which has more direct exposure to light and, therefore, lowers the efficiency of light absorption by PSII . The higher density of chlorophylls in M. angicava could explain higher photosynthesis per thallus area, whereas, higher efficiency of light absorption by PSII in P. undulatum could explain higher photosynthesis per total chlorophyll content. The differences in light absorption efficiency and quantum efficiency of PSII might be an important ecological strategy in these two species for their coexistence in the intertidal area.  相似文献   

7.
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.  相似文献   

8.
The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.  相似文献   

9.
The interactions between Hg2+, Ce3+, and the mixuure of Ce3+ and Hg2+, and DNA from fish intestine in vitro were investigated by using absorption spectrum and fluorescence emission spectrum. The ultraviolet absorption spectra indicated that the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ to DNA generated an obviously hypochromic effect. Meanwhile, the peak of DNA at 205.2 nm blue-shifted and at 258.2 nm red-shifted. The size of the hypochromic effect and the peak shift of DNA by metal ion treatments was Hg2+>Hg2++Ce3+>Ce3+. The fluorescence emission spectra showed that with the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ the emission peak at about 416.2 nm of DNA did not obviously change, but the intensity reduced gradually and the sequence was Hg2+>Hg2++Ce2+>Ce3+. Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ had 1.12, 0.19, and 0.41 binding sites to DNA, respectively; the fluorescence quenching of DNA caused by the metal ions all attributed to static quenching. The binding constants (K A ) of binding siees were 8.98×104 L/mol and 1.02×104 L/mol, 5.12×104 L/mol and 1.10×103 L/mol, 6.66×104 L/mol and 2.36×103 L/mol, respectively. The results showed that Ce3+ could relieve the destruction of Hg2+ on the DNA structure.  相似文献   

10.
In the article, we report that effects of nano-anatase on the spectral characteristics and content of light-harvesting complex II (LHCII) on the thylakoid membranes of spinach were investigated. The results showed that nano-anatase treatment could increase LHCII content on the thylakoid membranes of spinach and the trimer of LHCII; nano-anatase could enter the spinach chloroplasts and bind to PSII. Meanwhile, spectroscopy assays indicated that the absorption intensity of LHCII from nano-anatase-treated spinach was obviously increased in the red and the blue region, fluorescence quantum yield near 685 nm of LHCII was enhanced, the fluorescence excitation intensity near 440 and 480 nm of LHCII significantly rose and F 480/F 440 ratio was reduced. Oxygen evolution rate of PSII was greatly improved. Together, nano-anatase promoted energy transferring from chlorophyll (chl) b and carotenoid to chl a, and nano-anatase TiO2 was photosensitized by chl of LHCII, which led to enhance the efficiency of absorbing, transferring, and converting light energy.  相似文献   

11.
The complex of photosystem II (PSII) had been prepared from spinach by treatment with Triton X-100. The PSII, which had been depleted of the extrinsic 17- and 23-kDa polypeptides, was obtained by exposing the solution to a high concentration of NaCl, and the complex of PSII-La3+ was prepared by treatment with LaCl3. The result indicated that La3+ could inhibit the oxygen-evolution activity of PSII by replacing the Ca2+. The local structural environment of La in PSII has been also studied by using extended X-ray absorption fine structure (EXAFS). The primary result of EXAFS indicated that La coordinated with eight oxygen and/or nitrogen atoms, with the distance of the La-O/N bond being 2.5 Å. In addition, La coordinated with four carbon atoms, with a distance of 3.5 Å in the second shell. In the third shell, La coordinated with two manganese atoms, with the distance of La-Mn bond being 4.49 Å, and it was also found that the La-Mn distance (4.49 Å) was longer than that of Ca-Mn (3.3 Å) (1) in PSII.  相似文献   

12.
Added Ce3+ can partly substitute for Ca2+ or Mg2+ and improve photosynthesis under the deficiency of these elements, but very few studies focused on photosynthetic improvement in maize seedlings caused by K+ deficiency, salt stress, especially a combination of K+ deficiency and salt stress. In the present study, the effects of Ce3+ on the photosynthesis of maize seedlings under the three different stresses were investigated. The results showed that added Ce3+ under various stresses increased the ratios of free water/bound water and of K+/Na+, the pigment contents, the values of Fv/Fm, Y(II), ETR(II), Y(NPQ), Qp, qL, NPQ, and qN of photosystem II (PSII), the values of Y(I) and ETR(I) of photosystem I (PSI) and the expression levels of LhcII cab1 and rbcL, and decreased the values of Y(NO) and Y(NA). This implied that added Ce3+ depressed ion toxicity, photodamage of PSII, and acceptor side constraints of PSI, and enhanced adjustable energy dissipation, the responses of photochemistry, and carbon assimilation caused by K+ deficiency, salt stress, and the combination of K+ deficiency and salt stress. However, Ce3+ mitigation of photosynthetic inhibition in maize seedlings caused by the combined stresses was greater than that of salt stress, and Ce3+ mitigation under salt stress was greater than that under K+ deficiency. In addition, the results also showed that Ce3+ cannot improve photosynthesis and growth of maize seedlings under K+ deficiency by substituting for K+.  相似文献   

13.
The action of the environmental toxic Pb2+ on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb2+ action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb2+ confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb2+. This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.  相似文献   

14.
Being a proven photocatalyst, nano-anatase is capable of undergoing electron transfer reactions under light. In previous studies we had proven that nano-anatase improved photosynthesis and greatly promoted spinach growth. The mechanisms by which nano-anatase promotes energy transfer and the conversion efficiency of the process are still not clearly understood. In the present paper, we report the results obtained with the photosystem II (PSII) isolated from spinach and treated by nano-anatase TiO2 and studied the effect of nano-anatase TiO2 on energy transfer in PSII by spectroscopy and on oxygen evolution. The results showed that nano-anatase TiO2 treatment at a suitable concentration could significantly change PSII microenvironment and increase absorbance for visible light, improve energy transfer among amino acids within PSII protein complex, and accelerate energy transport from tyrosine residue to chlorophyll a. The photochemical activity of PSII (fluorescence quantum yield) and its oxygen-evolving rate were enhanced by nano-anatase TiO2. This is viewed as evidence that nano-anatase TiO2 can promote energy transfer and oxygen evolution in PSII of spinach.  相似文献   

15.
The mechanism of the molecular interaction between Ce3+, a member of rare earth elements, and Rubisco in vitro is investigated. The carboxylase activity of Rubisco greatly increased under low concentrations of Ce3+ and decreased under high concentrations of Ce3+. The ultraviolet absorption spectra show that the various concentrations of Ce3+ treatment do not shift the characteristic peaks of Rubisco while the characteristic peak intensity of Rubisco increases with increasing Ce3+ concentration. The Rubisco–Ce3+ interactions also do not cause any noticeable change in the λmax of Rubisco fluorescence spectra. However, the fluorescence intensity of Rubisco is found quenched by the addition of Ce3+, which strongly suggests that Ce3+ could directly bind to the Rubisco protein. and the binding sites is estimated to 1.52 per protein. The binding between Ce3+ and Rubisco is also proved by extended X-ray absorption fine-structure essay; Ce3+ coordinated with eight oxygen atoms of Rubisco in first shells and six oxygen atoms in second shells. The results implied that Ce3+ might improve the microenvironment of Rubisco and, in turn, affected the carboxylase capacity of Rubisco greatly.  相似文献   

16.
The activity of alanine aminotransferase (ALT; E.C. 2.6.1.2) is often changed upon inflammatory responses in animals. Rare earths was shown to provoke various inflammatory responses both in rats and mice; however, the molecular mechanism by which rare earths exert its toxicity has not been completely understood, especially, we know little about the mechanism of the interaction between CeCl3 and ALT. In this report, we investigated the mechanisms of CeCl3 on ALT activity in vivo and in vitro. Our results showed that Ce3+ could significantly activate ALT in vivo and in vitro; the kinetics constant (Km) and Vmax were 0.018 μM and 1,380 unit mg−1 protein min−1, respectively, at a low concentration of Ce3+, and 0.027 μM and 624 unit mg−1 protein min−1, respectively, at a high concentration of Ce3+. By UV absorption and fluorescence spectroscopy assays, the Ce3+ was determined to be directly bound to ALT; the binding site of Ce3+ to ALT was 1.72, and the binding constants of the binding site were 4.82 × 108 and 9.05 × 107 L mol−1. Based on the analysis of the circular dichroism spectra, it was concluded that the binding of Ce3+ altered the secondary structure of ALT, suggesting that the observed enhancement of ALT activity was caused by a subtle structural change in the active site through the formation of the complex with Ce3+.  相似文献   

17.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

18.
The effects of Mn2+ deficiency on light absorption, transmission, and oxygen evolution of maize chloroplasts were investigated by spectral methods. Several effects of Mn2+ deficiency were observed: (1) the skeleton of pigment protein complexes and oxygen-evolving center and the combination between pigment and protein were damaged; (2) the light absorption of chloroplasts was obviously decreased; (3) the energy transfer among amino acids within PS II protein–pigment complex and decreased energy transport from tyrosine residue to chlorophyll a and from chlorophyll b and carotenoid to chlorophyll a were inhibited; (4) the oxygen-evolving of chloroplast was significantly inhibited. However, Mn2+ addition decreased the damage of light absorption, transmission, and oxygen evolution of maize chloroplasts caused by Mn2+ deficiency.  相似文献   

19.
The activity of lactate dehydrogenase (LDH, EC1.1.1.27) is often changed upon inflammatory responses in animals. Lanthanoid (Ln) was shown to provoke various inflammatory responses both in rats and mice; however, the molecular mechanism by which Ln3+ exert its toxicity has not been completely understood, especially that we know little about the mechanism of the interaction between Ln with 4f electron shell and alternation valence and LDH. In this report, we investigated the mechanisms of LaCl3, CeCl3, and NdCl3 on LDH activity in vivo and in vitro. Our results showed that La3+, Ce3+, and Nd3+ could significantly activate LDH in vivo and in vitro; the order of activation was Ce3+?>?Nd3+?>?La3+?>?control. The affinity of LDH for Ce3+ was higher than Nd3+ and La3+; the saturated binding sites for Ce3+ on the LDH protein were 1.2 and for La3+ and Nd3+ 1.55. Ln3+ caused the reduction of exposure degree of cysteine or tryptophan/tyrosine of LDH, the increase of space resistance, and the enhancement of α-helix in secondary structure of LDH, which was greatest in Ce3+ treatment, medium in Nd3+ treatment, and least in La3+ treatment. It implied that the changes of structure–function on LDH caused by Ln3+ were closely related to the characteristics of 4f electron shell and alternation valence in Ln.  相似文献   

20.

Background and Aims

Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca2+ and Cl as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl and Ca2+, but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides.

Methods

Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT–PCR and time-resolved chlorophyll fluorescence were used.

Key Results

Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein.

Conclusions

In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII.Key words: Photosystem II, PsbQ, PsbP, halophytes, Salicornia veneta  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号