首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commercially available LIVE/DEAD BacLight kit is enjoying increased popularity among researchers in various fields of microbiology. Its use in combination with flow cytometry brought up new questions about how to interpret LIVE/DEAD staining results. Intermediate states, normally difficult to detect with epifluorescence microscopy, are a common phenomenon when the assay is used in flow cytometry and still lack rationale. It is shown here that the application of propidium iodide in combination with a green fluorescent total nucleic acid stain on UVA-irradiated cells of Escherichia coli, Salmonella enterica serovar Typhimurium, Shigella flexneri, and a community of freshwater bacteria resulted in a clear and distinctive flow cytometric staining pattern. In the gram-negative bacterium E. coli as well as in the two enteric pathogens, the pattern can be related to the presence of intermediate cellular states characterized by the degree of damage afflicted specifically on the bacterial outer membrane. This hypothesis is supported by the fact that EDTA-treated nonirradiated cells exhibit the same staining properties. On the contrary, this pattern was not observed in gram-positive Enterococcus faecalis, which lacks an outer membrane. Our observations add a new aspect to the LIVE/DEAD stain, which so far was believed to be dependent only on cytoplasmic membrane permeability.  相似文献   

2.

Background

We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates.

Methods

We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Bac light LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity.

Results

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates.

Conclusions

These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells.  相似文献   

3.
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells.  相似文献   

4.
The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (<30 min) and clearly differentiated live from heat-killed bacteria. The microscopic enumeration of various proportions of viable to heat-killed bacteria was then compared with conventional plating on nutrient agar. Direct microscopic enumeration of bacteria indicated that plate counting led to an underestimation of bacterial numbers, which was most likely related to clumping. Similarly, LIVE/DEAD BacLight staining yielded bacterial counts that were higher than cell numbers obtained by plate counting (CFU) in milk and fermented milk. These results indicate the value of the microscopic approach for rapid viability testing of such probiotic products. In contrast, the numbers obtained by direct microscopic counting for Cheddar cheese and spray-dried probiotic milk powder were lower than those obtained by plate counting. These results highlight the limitations of LIVE/DEAD BacLight staining and the need to optimize the technique for different strain-product combinations. The minimum detection limit for in situ viability staining in conjunction with confocal scanning laser microscopy enumeration was ~108 bacteria/ml (equivalent to ~107 CFU/ml), based on Bifidobacterium sp. strain UCC 35612 counts in maximum-recovery diluent.  相似文献   

5.
Lactobacillus salivarius belongs to the microbiota of human oral cavity and gastrointestinal tract, as well as of bird and pig intestines. Probiotic activity of various L. salivarius strains has been recently extensively investigated. Production of exopolysaccharides and formation of biofilms as a mechanism providing for resistance to unfavorable factors are also of interest. The goal of this work was to assess the efficiency of microbiological methods for analysis of bacterial concentrations in the cultures of L. salivarius strain NBR2. Samples of lactobacteria grown in liquid medium were collected at equal intervals. The parameters determined were the number of colony-forming units (CFU/mL), share of dead cells by the membrane permeabilization test (LIVE/DEAD) using flow cytometry and fluorescence microscopy, optical density at 595 nm, and pH. After 10 h of cultivation, formation of aggregates commenced, which consisted mainly of living cells and were detected throughout the experiment (30 h). This resulted in underestimation of bacterial abundance determined by plating (CFU/mL). Optical density of the culture and the share of dead cells determined by the LIVE/DEAD method are more reliable criteria of growth of the statically developing L. salivarius culture, which is prone to formation of biofilms and cell aggregates.  相似文献   

6.
7.
Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm), motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS). Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis), ΔΨm (with JC-1 dye by flow cytometry), mitochondrial ROS generation (with MitoSOX red dye by flow cytometry) and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry) of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum). A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.  相似文献   

8.
9.
Complement-mediated killing of bacteria was monitored by flow cytometric, luminometric, and conventional plate counting methods. A flow cytometric determination of bacterial viability was carried out by using dual staining with a LIVE/DEAD BacLight bacterial viability kit. In addition to the viable cell population, several other populations emerged in the fluorescence histogram, and there was a dramatic decrease in the total cell count in the light-scattering histogram in the course of the complement reaction. To permit luminometric measurements, Bacillus subtilis and Escherichia coli were made bioluminescent by expressing an insect luciferase gene. Addition of substrate after the complement reaction resulted in bioluminescence, the level of which was a measure of the viable cell population. All three methods gave essentially the same killing rate, suggesting that the bacteriolytic activity of serum complement can be measured rapidly and conveniently by using viability stains or bioluminescence. In principle, any bacterial strain can be used for viability staining and flow cytometric analysis. For the bioluminescence measurements genetically engineered bacteria are needed, but the advantage is that it is possible to screen automatically a large number of samples.  相似文献   

10.
A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iodide (PI), staining damaged membrane cells fluorescent red and intact cells fluorescent green. For evaluation of the fluorescence method, cells of Lactococcus lactis MG1363 were incubated under different conditions and subsequently labeled with SYTO 9 and PI and analyzed by flow cytometry and epifluorescence microscopy. Lysis was induced by treatment with cell wall-hydrolyzing enzyme mutanolysin. Cheese conditions were mimicked by incubating cells in a buffer with high protein, potassium, and magnesium, which stabilizes the cells. Under nonstabilizing conditions a high concentration of mutanolysin caused complete disruption of the cells. This resulted in a decrease in the total number of cells and release of cytoplasmic enzyme lactate dehydrogenase. In the stabilizing buffer, mutanolysin caused membrane damage as well but the cells disintegrated at a much lower rate. Stabilizing buffer supported permeabilized cells, as indicated by a high number of PI-labeled cells. In addition, permeable cells did not release intracellular aminopeptidase N, but increased enzyme activity was observed with the externally added and nonpermeable peptide substrate lysyl-p-nitroanilide. Finally, with these stains and confocal scanning laser microscopy the permeabilization of starter cells in cheese could be analyzed.  相似文献   

11.
A novel, quantitative method for detecting poly-3-hydroxybutyrate (PHB) amounts in viable cells was developed to allow for high-throughput screening of mutant libraries. The staining technique was demonstrated and optimized for the cyanobacterium Synechocystis sp. strain PCC6803 and the eubacterium Escherichia coli to maximize the fluorescence difference between PHB-accumulating and control cells by flow cytometry. In Synechocystis, the level of nonspecific dye binding was reduced by using nonionic stain buffer that allowed quantitation of fluorescence levels. In E. coli, the use of a mild sucrose shock facilitated uptake of Nile red without significant loss of viability. The optimized staining protocols yielded a linear response for the mean fluorescence against (chemically measured) PHB. The staining protocols are novel methods useful in the high-throughput evaluation of combinatorial libraries of Synechocystis and E. coli using fluorescence-activated cell sorting to identify mutants with increased PHB-accumulating properties.  相似文献   

12.
The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (<30 min) and clearly differentiated live from heat-killed bacteria. The microscopic enumeration of various proportions of viable to heat-killed bacteria was then compared with conventional plating on nutrient agar. Direct microscopic enumeration of bacteria indicated that plate counting led to an underestimation of bacterial numbers, which was most likely related to clumping. Similarly, LIVE/DEAD BacLight staining yielded bacterial counts that were higher than cell numbers obtained by plate counting (CFU) in milk and fermented milk. These results indicate the value of the microscopic approach for rapid viability testing of such probiotic products. In contrast, the numbers obtained by direct microscopic counting for Cheddar cheese and spray-dried probiotic milk powder were lower than those obtained by plate counting. These results highlight the limitations of LIVE/DEAD BacLight staining and the need to optimize the technique for different strain-product combinations. The minimum detection limit for in situ viability staining in conjunction with confocal scanning laser microscopy enumeration was approximately 10(8) bacteria/ml (equivalent to approximately 10(7) CFU/ml), based on Bifidobacterium sp. strain UCC 35612 counts in maximum-recovery diluent.  相似文献   

13.
As a nonthermal sterilization technique, ultrasound has attracted great interest in the field of food preservation. In this study, flow cytometry and transmission electron microscopy were employed to investigate ultrasound-induced damage to Escherichia coli and Staphylococcus aureus. For flow cytometry studies, single staining with propidium iodide (PI) or carboxyfluorescein diacetate (cFDA) revealed that ultrasound treatment caused cell death by compromising membrane integrity, inactivating intracellular esterases, and inhibiting metabolic performance. The results showed that ultrasound damage was independent of initial bacterial concentrations, while the mechanism of cellular damage differed according to the bacterial species. For the Gram-negative bacterium E. coli, ultrasound worked first on the outer membrane rather than the cytoplasmic membrane. Based on the double-staining results, we inferred that ultrasound treatment might be an all-or-nothing process: cells ruptured and disintegrated by ultrasound cannot be revived, which can be considered an advantage of ultrasound over other nonthermal techniques. Transmission electron microscopy studies revealed that the mechanism of ultrasound-induced damage was multitarget inactivation, involving the cell wall, cytoplasmic membrane, and inner structure. Understanding of the irreversible antibacterial action of ultrasound has great significance for its further utilization in the food industry.  相似文献   

14.
BACKGROUND: Several staining protocols have been developed for flow cytometric analysis of bacterial viability. One promising method is dual staining with the LIVE/DEAD BacLight bacterial viability kit. In this procedure, cells are treated with two different DNA-binding dyes (SYTO9 and PI), and viability is estimated according to the proportion of bound stain. SYTO9 diffuses through the intact cell membrane and binds cellular DNA, while PI binds DNA of damaged cells only. This dual-staining method allows effective separation between viable and dead cells, which is far more difficult to achieve with single staining. Although SYTO9-PI dual staining is practical for various bacterial viability analyses, the method has a number of disadvantages. Specifically, the passage of SYTO9 through the cell membrane is a slow process, which is significantly accelerated when the integrity of the cell membrane is disrupted. As a result, SYTO9 binding to DNA is considerably enhanced. PI competes for binding sites with SYTO9 and may displace the bound dye. These properties diminish the reliability of the LIVE/DEAD viability kit. In this study, we investigate an alternative method for measuring bacterial viability using a combination of green fluorescent protein (GFP) and PI, with a view to improving data reliability. METHODS: Recombinant Escherichia coli cells with a plasmid containing the gene for jellyfish GFP were stained with PI, and green and red fluorescence were measured by FCM. For comparison, cells containing the plasmid from which gfp was removed were stained with SYTO9 and PI, and analyzed by FCM. Viability was estimated according to the proportion of green and red fluorescence. In addition, bioluminescence and plate counting (other methods to assess viability) were used as reference procedures. RESULTS: SYTO9-PI dual staining of bacterial cells revealed three different cell populations: living, compromised, and dead cells. These cell populations were more distinct when the GFP-PI combination was used instead of dual staining. No differences in sensitivity were observed between the two methods. However, substitution of SYTO9 with GFP accelerated the procedure. Bioluminescence and plate counting results were in agreement with flow cytometric viability data. CONCLUSIONS: In bacterial viability analyses, the GFP-PI combination provided better distinction between current viability stages of E. coli cells than SYTO9-PI dual staining. Additionally, the overall procedure was more rapid. No marked differences in sensitivity were observed.  相似文献   

15.
Cell viability in probiotic preparations is traditionally assessed by the plate count technique. Additionally, fluorescent staining combined with epifluorescence microscopy or flow cytometry has been developed for the viability assessment, but the currently available assays are either laborious or require highly sophisticated equipment. The aim of this study was to investigate the applicability of a microplate scale fluorochrome assay for predicting the cell state of freeze-dried Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis preparations. In addition to viability assessment with LIVE/DEAD BacLight Bacterial Viability Kit, DiBAC(4)3 stain was used for the kinetic measurement of changes in bifidobacterial cell membrane functions during exposure to low pH. The microplate scale fluorochrome assay results on the viability and cell numbers of probiotic preparations correlated well with the results obtained with the culture-based technique and (with few exceptions) with epifluorescence microscopy. The assay was applicable also for the viability assessment of stressed (acid-treated) cells provided that the cell density in treatments was adjusted to the optimal measurement level of the fluorometer. The microplate scale fluorochrome assay offers a rapid and robust tool for the viability assessment of probiotic preparations, and enables also kinetic measurements.  相似文献   

16.
Nile blue A is used as a stain for polyhydroxyalkanoic acid-accumulating microorganisms or to detect polyhydroxyalkanoic acids in microorganisms. Here we show that Escherichia coli cells that do not accumulate detectable polyhydroxyalkanoic acids can be stained with Nile blue A and that this staining is sufficient for identifying these cells in fluorescence-activated cell sorting (FACS) experiments. Nile blue A staining did not affect either surface display of peptides or specific labeling of these peptides by a second fluorescence. Staining E. coli for flow cytometry using Nile blue A is an easy-to-handle and low-cost alternative to other fluorescent dyes or the intracellular expression of, for example, green fluorescent protein.  相似文献   

17.
Rapid fluorescence techniques were evaluated for the detection of bacterial contaminants in papermaking chemicals including starch and the resin-based sizes and starch slurries used in the paper industry. Viable and non-viable bacterial cells were visualised by fluorescent probes and detected by epifluorescence microscopy and flow cytometry. The best discrimination ability was obtained with the fluorescent probes LIVE/DEAD and SYBR Green, based on the staining of cellular nucleic acid, and ChemChrome V3, which demonstrated cellular enzymatic activity. The process samples had to be diluted and filtered before fluorescence staining and analysis because they were viscous and contained solid particles. Fluorescence microscopic counts of bacteria in highly contaminated process samples were similar to plate counts, but flow cytometric enumeration of bacterial cells in process samples yielded 2- to 10-fold lower counts compared with plate counts, depending on the consistency of the sample. The detection limits in flow cytometric analysis and in epifluorescence microscopy were 103–106 cells ml−1 and 105–106 cells ml−1, respectively. Intrinsic bacterial contamination was detectable with fluorescence techniques and highly contaminated process samples could be analysed with fluorescence methods. Electronic Publication  相似文献   

18.
The use of flow cytometry to rapidly assess the viability of Pseudomonas spp. and Staphylococcus spp. after exposure to a quaternary ammonium compound (QAC) was investigated using rhodamine 123 (Rh 123), Stain A (LIVE Stain) accumulating in viable but not in dead cells (Live/Dead Bac light bacterial viability kit, Molecular Probes Inc., Eugene, OR, USA), and Sytox green (Molecular Probes) accumulating in dead but not viable cells. Staining conditions were optimized for each stain. The fraction of viable cells after exposure to benzalkonium chloride was determined by using the three staining techniques and colony counts on agar medium. For all Staphylococcus spp. tested there was a high correlation between the methods based on flow cytometry and colony counts irrespective of which stain was used. Although viable, all Pseudomonas spp. tested accumulated Rh 123 poorly and about 30% failed to accumulate LIVE stain as well. However, the correlation between colony counts and Sytox green labelling of Pseudomonas spp. was high. Our results indicate that flow cytometry together with live or dead cell labelling can be used to study the bactericidal effect of QACs. The methods based on LIVE stain and Sytox green were simpler and less time consuming than Rh 123 labelling. Only Sytox green could be used with all strains of Staphylococcvs and Pseudomonas tested.  相似文献   

19.
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.  相似文献   

20.
Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live–dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号