首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vasopressin V1a receptor undergoes homologous and heterologous desensitizations which can be mimicked by activation of protein kinase C. This suggests that phosphorylation of the V1a receptor may be involved in the desensitization mechanisms. Such a phosphorylation was presently investigated in HEK 293 cells stably transfected with rat vasopressin V1a receptor. Metabolic labelling and immunoprecipitation of epitope-tagged V1a receptor evidenced a 52-kDa band and a 92-kDa band. Glycosidase treatments and immunoblotting experiments suggest that the 52-kDa band corresponds to an immature unprocessed receptor protein, whereas the 92-kDa band would correspond to a highly glycosylated form of the mature V1a receptor. Exposure of the cells to vasopressin induced a selective 32P phosphate incorporation in the 92-kDa form of the receptor. This homologous ligand-induced phosphorylation was dose dependent with maximal phosphate incorporation corresponding to four times the basal level. Stimulation of the endogenous phospholipase C-coupled m3 muscarinic receptor by carbachol-induced heterologous phosphorylation of the V1a receptor whose amplitude was half that of the homologous phosphorylation. This heterologous phosphorylation was associated with a reduced vasopressin-dependent increase in intracellular calcium.  相似文献   

2.
The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxytocin receptor into the V2 receptor showed an increase in binding affinity for oxytocin versus vasopressin and a diminished cleavage. The proteolysis-resistant chimeric V2/oxytocin receptor, which contains the first three extracellular domains of the oxytocin receptor, stimulated cAMP accumulation to a larger extent in response to vasopressin than the wild-type receptor and showed impaired desensitization of the adenylate cyclase system. Our data indicate that the proteolytic cleavage of the V2 receptor requires a defined conformation, especially of the first two extracellular domains that is induced by agonist binding. Furthermore, the results suggest that the proteolytic V2 receptor cleavage might play a role in signal termination at elevated hormone concentrations.  相似文献   

3.
Arginine vasopressin (AVP) regulates biological processes by binding to G protein-coupled receptors. In Swiss 3T3 fibroblasts, expressing the V(1a) subtype of vasopressin receptors, AVP mobilizes calcium from intracellular stores. In proliferating cells, the AVP-induced increase in intracellular calcium concentration ([Ca(2+)](i)) was mediated by G proteins of the G(q) family, which are insensitive to pertussis toxin (PTX) pretreatment of the cells. In quiescent cells, the AVP-induced increase in [Ca(2+)](i) was partially PTX-sensitive, suggesting an involvement of G(i) proteins. We confirmed this by photoaffinity labeling of G proteins in Swiss 3T3 cell membranes activated by AVP. In Swiss 3T3 cells arrested in the G(0)/G(1) phase of the cell cycle, the AVP-induced increase in [Ca(2+)](i) was also partially PTX-sensitive but was PTX-insensitive in cells arrested in other phases of the cell cycles. The blocking effect of PTX pretreatment in G(0)/G(1) cells was mimicked by microinjection of antisense oligonucleotides suppressing the expression of the Galpha(i3) subunits. These results were confirmed by microinjection of antibodies directed against the C terminus of G protein alpha-subunits. The data presented indicate that in Swiss 3T3 fibroblasts synchronized in the G(0)/G(1) phase of the cell cycle the V(1a) receptor couples to G(q/11) and G(i3) to activate the phospholipase C-beta, leading to release of intracellular calcium.  相似文献   

4.
A large number of G protein-coupled receptors are palmitoylated on cysteine residues located in their carboxyl tail, but the general role of this post-translational modification remains poorly understood. Here we show that preventing palmitoylation of the V2 vasopressin receptor, by site-directed mutagenesis of cysteines 341 and 342, significantly delayed and decreased both agonist-promoted receptor endocytosis and mitogen-activated protein kinase activation. Pharmacological blockade of receptor endocytosis is without effect on the vasopressin-stimulated mitogen-activated protein kinase activity, excluding the possibility that the reduced kinase activation mediated by the palmitoylation-less mutant could result from altered receptor endocytosis. In contrast, two dominant negative mutants of beta-arrestin which inhibit receptor endocytosis also attenuated vasopressin-stimulated mitogen-activated protein kinase activity, suggesting that the scaffolding protein, beta-arrestin, represents the common link among receptor palmitoylation, endocytosis, and kinase activation. Coimmunoprecipitation and bioluminescence resonance energy transfer experiments confirmed that inhibiting receptor palmitoylation considerably reduced the vasopressin-stimulated recruitment of beta-arrestin to the receptor. Interestingly, the changes in beta-arrestin recruitment kinetics were similar to those observed for vasopressin-stimulated receptor endocytosis and mitogen-activated protein kinase activation. Taken together the results indicate that palmitoylation enhances the recruitment of beta-arrestin to the activated V2 vasopressin receptor thus facilitating processes requiring the scaffolding action of beta-arrestin.  相似文献   

5.
When exposed to vasoactive intestinal peptide (VIP), the human wild type VPAC1 receptor expressed in Chinese hamster ovary (CHO) cells is rapidly phosphorylated, desensitized, and internalized in the endosomal compartment and is not re-expressed at the cell membrane within 2 h after agonist removal. The aims of the present work were first to correlate receptor phosphorylation level to internalization and recycling, measured by flow cytometry and in some cases by confocal microscopy using a monoclonal antibody that did not interfere with ligand binding, and second to identify the phosphorylated Ser/Thr residues. Combining receptor mutations and truncations allowed identification of Ser250 (in the second intracellular loop), Thr429, Ser435, Ser448 or Ser449, and Ser455 (all in the distal part of the C terminus) as candidates for VIP-stimulated phosphorylation. The effects of single mutations were not additive, suggesting alternative phosphorylation sites in mutated receptors. Replacement of all of the Ser/Thr residues in the carboxyl-terminal tail and truncation of the domain containing these residues completely inhibited VIP-stimulated phosphorylation and receptor internalization. There was, however, no direct correlation between receptor phosphorylation and internalization; in some truncated and mutated receptors, a 70% reduction in phosphorylation had little effect on internalization. In contrast to results obtained on the wild type and all of the mutated or truncated receptors that still underwent phosphorylation, internalization of the severely truncated receptor was reversed within 2 h of incubation in the absence of the agonist. Receptor recovery was blocked by monensin, an endosome inhibitor.  相似文献   

6.
The signaling pathway of G protein‐coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1bR) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β‐arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1bR‐mediated MAP kinase pathway. Using MEF cells Knocked‐out for β‐arrestins 1 and 2, we demonstrated that both β‐arrestins 1 and 2 play a fundamental role in internalization and recycling of V1bR with a rapid and transient V1bR‐β‐arrestin interaction in contrast to a slow and long‐lasting β‐arrestin recruitment of the V2 vasopressin receptor subtype (V2R). Using V1bR‐V2R chimeras and V1bR C‐terminus truncations, we demonstrated the critical role of the V1bR C‐terminus in its interaction with β‐arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation‐independent manner. In parallel, V1bR MAP kinase activation was dependent on arrestins and Src‐kinase but independent on G proteins. Interestingly, Src interacted with hV1bR at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1bR involving both arrestins and Src kinase family.   相似文献   

7.
Receptor activation may result in distinct subcellular patterns of Ca2+ release. To define the subcellular distribution of Ca2+i signals induced by stimulation of the vasopressin V1a receptor, we expressed the cloned receptor in Xenopus oocytes. Oocytes were then loaded with fluo-3 and observed using confocal microscopy. Vasopressin induced a single concentric wave of increased Ca2+ that radiated inward from the plasma membrane. With submaximal stimulation, however, regions of the Ca2+ wave spontaneously reorganized into repetitive (oscillatory) waves. Focal stimulation of a small part of the plasma membrane resulted in a Ca2+ wave which began at the point of stimulation, radiated toward the center of the cell, then reorganized into multiple foci of repetitive, colliding waves and spirals of increased Ca2+i. The pattern of Ca2+ signaling induced by focal or global stimulation was not altered in Ca(2+)-free medium, although signals did not propagate as fast. Finally, subcellular Ca2+ signaling patterns induced by vasopressin were inhibited by caffeine, while neither vasopressin nor microinjection of inositol trisphosphate blocked caffeine-induced increases in cytosolic Ca2+. Thus, stimulation of the V1a receptor in this cell system induces a complex pattern of Ca2+ signaling which is influenced by (1) the magnitude of the stimulus, (2) the distribution of the surface receptors that are stimulated, and (3) mobilization of Ca2+ from the extracellular space as well as from two distinct endogenous Ca2+ pools. The manner in which a single type of receptor is activated may represent an important potential mechanism for subcellular Ca2+i signaling.  相似文献   

8.
It is fundamentally important to define how agonist-receptor interaction differs from antagonist-receptor interaction. The V1a vasopressin receptor (V1aR) is a member of the neurohypophysial hormone subfamily of G protein-coupled receptors. Using alanine-scanning mutagenesis of the N-terminal juxtamembrane segment of the V1aR, we now establish that Glu54 (1.35) is critical for arginine vasopressin binding. The mutant [E54A]V1aR exhibited decreased arginine vasopressin affinity (1700-fold) and disrupted signaling, but antagonist binding was unaffected. Mutation of Glu54 had an almost identical pharmacological effect as mutation of Arg46, raising the possibility that agonist binding required a mutual interaction between Glu54 and Arg46. The role of these two charged residues was investigated by 1) substituting Glu54; 2) inserting additional Glu/Arg in transmembrane helix (TM) 1; 3) repositioning the Glu/Arg in TM1; and 4) characterizing the reciprocal mutant [R46E/E54R]V1aR. We conclude that 1) the positive/negative charges need to be precisely positioned in this N terminus/TM1 segment; and 2) Glu54 and Arg46 function independently, providing two discrete epitopes required for high-affinity agonist binding and signaling. This study explains why Glu and Arg, part of an -R(X3)L/V(X3)E(X3)L- motif, are conserved at these loci throughout this G protein-coupled receptor subfamily and provides molecular insight into key differences between agonist and antagonist binding requirements.  相似文献   

9.
Deng HB  Yu Y  Pak Y  O'Dowd BF  George SR  Surratt CK  Uhl GR  Wang JB 《Biochemistry》2000,39(18):5492-5499
Determining which domains and amino acid residues of the mu opioid receptor are phosphorylated is critical for understanding the mechanism of mu opioid receptor phosphorylation. The role of the C-terminus of the receptor was investigated by examining the C-terminally truncated or point-mutated mu opioid receptors in receptor phosphorylation and desensitization. Both wild-type and mutated receptors were stably expressed in Chinese hamster ovary (CHO) cells. The receptor expression was confirmed by receptor radioligand binding and immunoblottting. After exposure to 5 microM of DAMGO, phosphorylation of the C-terminally truncated receptor and the mutant receptor T394A was reduced to 40 and 10% of that of the wild-type receptor, respectively. Mutation effects on agonist-induced desensitization were studied using adenylyl cyclase inhibition assays. The C-terminally truncated receptor and mutant receptor T394A both showed complete loss of DAMGO-induced desensitization, while the mutant T/S-7A receptor only lost part of its ability to desensitize. Taken together, these results suggest that the C-terminus of the mu opioid receptor participates in receptor phosphorylation and desensitization with threonine 394, a crucial residue for both features. DAMGO-induced mu opioid receptor phosphorylation and desensitization are associated and appear to involve both the mu opioid receptor C-terminus and other domains of the receptor.  相似文献   

10.
The vasoactive intestinal polypeptide type-1 (VPAC(1)) receptor is a class II G protein-coupled receptor, distinct from the adrenergic receptor superfamily. The mechanisms involved in the regulation of the VPAC(1) receptor are largely unknown. We examined agonist-dependent VPAC(1) receptor signaling, phosphorylation, desensitization, and sequestration in human embryonic kidney 293 cells. Agonist stimulation of cells overexpressing this receptor led to a dose-dependent increase in cAMP that peaked within 5-10 min and was completely desensitized after 20 min. Cells cotransfected with the VPAC(1) receptor (VPAC(1)R) and G protein-coupled receptor kinases (GRKs) 2, 3, 5, and 6 exhibited enhanced desensitization that was not evident with GRK 4. Immunoprecipitation of the epitope-tagged VPAC(1) receptor revealed dose-dependent phosphorylation that was increased with cotransfection of any GRK. Agonist-stimulated internalization of the VPAC(1)R peaked in 10 min, and neither overexpressed beta-arrestin nor its dominant-negative mutant altered internalization. However, a dynamin-dominant negative mutant did inhibit VPAC(1) receptor internalization. Interestingly, VPAC(1)R specificity in desensitization was not evident by study of the overexpressed receptor; however, we determined that human embryonic kidney 293 cells express an endogenous VPAC(1)R that did demonstrate dose-dependent GRK specificity. Therefore, VPAC(1) receptor regulation involves agonist-stimulated, GRK-mediated phosphorylation, beta-arrestin translocation, and dynamin-dependent receptor internalization. Moreover, study of endogenously expressed receptors may provide information not evident in overexpressed systems.  相似文献   

11.
Treatment of HEK293 cells expressing the delta-opioid receptor with agonist [d-Pen(2,5)]enkephalin (DPDPE) resulted in the rapid phosphorylation of the receptor. We constructed several mutants of the potential phosphorylation sites (Ser/Thr) at the carboxyl tail of the receptor in order to delineate the receptor phosphorylation sites and the agonist-induced desensitization and internalization. The Ser and Thr were substituted to alanine, and the corresponding mutants were transiently and stably expressed in HEK293 cells. We found that only two residues, i.e. Thr(358) and Ser(363), were phosphorylated, with Ser(363) being critical for the DPDPE-induced phosphorylation of the receptor. Furthermore, using alanine and aspartic acid substitutions, we found that the phosphorylation of the receptor is hierarchical, with Ser(363) as the primary phosphorylation site. Here, we demonstrated that DPDPE-induced rapid receptor desensitization, as measured by adenylyl cyclase activity, and receptor internalization are intimately related to phosphorylation of Thr(358) and Ser(363), with Thr(358) being involved in the receptor internalization.  相似文献   

12.
[Arg8]Vasopressin (AVP) has an antilipolytic action on adipocytes, but little is known about the mechanisms involved. Here, we examined the involvement of the V1a receptor in the antilipolytic effect of AVP using V1a receptor-deficient (V1aR-/-) mice. The levels of blood glycerol were increased in V1aR-/- mice. The levels of ketone bodies, such as acetoacetic acid and 3-hydroxybutyric acid, the products of the lipid metabolism, were increased in V1aR-/- mice under a fasting condition. Triacylglyceride and free fatty acid levels in blood were decreased in V1aR-/- mice. Furthermore, measurements with tandem mass spectrometry determined that carnitine and acylcarnitines in serum, the products of beta-oxidation, were increased in V1aR-/- mice. Most acylcarnitines were increased in V1aR-/- mice, especially in the case of 2-carbon (C2), C10:1, C10, C14:1, C16, C18:1, and hydroxy-18:1-carbon (OH-C18:1)-acylcarnitines under feeding rather than under fasting conditions. The analysis of tissue C2-acylcarnitine level showed that beta-oxidation was promoted in muscle under the feeding condition and in liver under the fasting condition. An in vitro assay using brown adipocytes showed that the cells of V1aR-/- mice were more sensitive to isoproterenol for lipolysis. These results suggest that the lipid metabolism is enhanced in V1aR-/- mice. The cAMP level was enhanced in V1aR-/- mice in response to isoproterenol. The phosphorylation of Akt by insulin stimulation was reduced in V1aR-/- mice. These results suggest that insulin signaling is suppressed in V1aR-/- mice. In addition, the total bile acid, taurine, and cholesterol levels in blood were increased, and an enlargement of the cholecyst was observed in V1aR-/- mice. These results indicated that the production of bile acid was enhanced by the increased level of cholesterol and taurine. Therefore, these results indicated that AVP could modulate the lipid metabolism by the antilipolytic action and the synthesis of bile acid via the V1a receptor.  相似文献   

13.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

14.
15.
Starting from the 2.8-A resolution x-ray structure of bovine rhodopsin, three-dimensional molecular models of the complexes between arginine vasopressin and two receptor subtypes (V1a, V1b) have been built. Amino acid sequence alignment and docking studies suggest that four key residues (1.35, 2.65, 4.61, and 5.35) fine tune the binding of vasopressin and related peptide agonists to both receptor subtypes. To validate these predictions, a series of single or double mutants were engineered at V1a and V1b receptor subtypes and tested for their binding and functional properties. Two negatively charged amino acids at positions 1.35 and 2.65 are key anchoring residues to the Arg8 residue of arginine vasopressin. Moreover, two amino acids (V(4.61) and P(5.35)) delineating a hydrophobic subsite at the human V1b receptor are responsible for the recognition of V1b selective peptide agonists. Last, one of the latter positions (5.35) is hypothesized to explain the pharmacological species differences between rat and human vasopressin receptors for a V1b peptide agonist. Altogether these refined three-dimensional models of V1a and V1b human receptors should enable the identification of further new selective V1a and V1b agonists as pharmacological but also therapeutic tools.  相似文献   

16.
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in several diseases such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G-protein-coupled receptor family. Following stimulation, PAFR becomes rapidly desensitized; this refractory state is dependent on PAFR phosphorylation, internalization and down-regulation. In this report, we show that the PAFR inverse agonist, WEB2086, can induce phosphorylation and down-regulation of PAFR. Using selective inhibitors, we determined that the agonist, PAF, and WEB2086 could induce phosphorylation of PAFR by PKC. Moreover, dominant-negative (DN) mutant of PKC isoforms beta inhibited WEB2086-stimulated PAFR phosphorylation, whereas PAF-stimulated phosphorylation was inhibited by DN PKCalpha and delta. WEB2086 also induced PAFR down-regulation which could be blocked by PKC inhibitors and by DN PKCbeta. WEB2086-induced down-regulation was dynamin-dependent but arrestin-independent. Unlike PAF, WEB2086-stimulated intracellular trafficking of PAFR was independent of Rab5. Specific inhibitors of lysosomal proteases and of proteasomes were both effective in reducing WEB2086-induced PAFR down-regulation, indicating the importance of receptor targeting to both lysosomes and proteasomes in long-term cell desensitization to WEB2086. These results indicate that although both agonists and inverse agonists induce receptor PAFR down-regulation, this may be accomplished through different signal transduction and trafficking pathways.  相似文献   

17.
Toad urinary bladder epithelial cells grown in culture (primary) show a significant increase in water-soluble inositol phosphates when treated with 10(-8) M vasopressin (AVP), but not with (1-deamino-8-D-arginine)vasopressin (dDAVP), a V2-agonist. The increase in inositol phosphates was blocked by the V1-antagonist, d(CH2)5Tyr(Me)AVP, suggesting a V1-coupled phosphoinositide breakdown. The V1-antagonist had no effect on basal adenylate cyclase activity nor on that stimulated by AVP. However, the V1-antagonist was found to attenuate the hydrosmotic response of AVP, suggesting some role of the V1-receptor cascade in the water flow response. Mezerein (MZ), a non-phorbol activator of protein kinase C (PKC) increased osmotic water flow when added to the mucosal surface. The response was less in magnitude and occurred over a longer period (90 min) than that observed with AVP. In an attempt to emulate the V1-response, activation of PKC, and an increase in intracellular calcium, toad bladders were incubated with MZ and the calcium ionophore A23187 (IP). It was found that IP enhanced the water flow response to MZ at all times measured. Mz and IP were also found to enhance cAMP-mediated water flow, suggesting that apical membrane permeability may be regulated in part through V1-receptor stimulation and its respective second messengers. Collectively, these observations suggest that the V1 receptor may play a role not only as part of a negative feedback system, but also as an integral component of the enhanced water permeability that occurs at the apical membrane.  相似文献   

18.
We investigated the targeting of the V(1a) receptor fused with the green fluorescence protein (V(1a)R-GFP) in polarized MDCK cells. Cells expressing V(1a)R-GFP displayed binding to vasopressin (AVP) and AVP-induced calcium responses, similar to cells expressing the wild-type V1a receptor. Interestingly, as with the wild-type V(1a)R, V(1a)R-GFP is preferentially distributed in the basolateral side of MDCK cells as monitored by confocal microscopy. Furthermore, AVP induced internalization of GFP-tagged receptors. Therefore, the GFP-tagged V(1a) receptor retains all the sorting signals of the wild-type receptor and offers an excellent system to elucidate the mechanisms of cell trafficking of V(1a) receptors.  相似文献   

19.
20.
[(3)H]SSR-149415 is the first tritiated nonpeptide vasopressin V(1b) receptor (V(1b)R) antagonist ligand. It was used for studying rodent (mouse, rat, hamster) and human V(1b)R from native or recombinant origin. Moreover, a close comparison between the human and the mouse V(1b)R was performed using SSR-149415/[(3)H]SSR-149415 in binding and functional studies in vitro. [(3)H]SSR-149415 binding was time-dependent, reversible, and saturable. Scatchard plot analysis gave a single class of high-affinity binding sites with apparent equilibrium dissociation constant (K(d)) approximately 1 nM and maximum binding density (B(max)) values from 7,000 to 300,000 sites/cell according to the cell line. In competition experiments, [(3)H]SSR-149415 binding was stereospecific and dose-dependently displaced by reference peptide and nonpeptide arginine vasopressin (AVP)/OT ligands following a V(1b) rank order of affinity: SSR-149415 = AVP > dCha > dPen > dPal > dDavp > SSR-126768A > SR-49059 > SSR-149424 > OT > SR-121463B. Species differences between human, rat, mouse, and hamster V(1b)R were observed. Autoradiography studies with [(3)H]SSR-149415 on rat and human pituitary showed intense specific labeling confined to corticotroph cells and absence of labeling in the other tissues examined. SSR-149415 potently and stereospecifically antagonized the AVP-induced inositol phosphate production and intracellular Ca(2+) increase (EC(50) from 1.83 to 3.05 nM) in recombinant cell lines expressing either the mouse or the human V(1b)R. AVP (10(-7) M) exposure of AtT20 cells expressing mouse or human EGFP-tagged V(1b)R induced their rapid internalization. Preincubation with 10(-6) M SSR-149415 counteracted the internalization process. Moreover, recycling of internalized receptors was observed upon 10(-6) M SSR-149415 treatment. Thus SSR-149415/[(3)H]SSR-149415 are unique tools for studying animal and human V(1b)R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号