首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of microorganisms on/in insoluble carriers is widely used to stabilize functional activity of microbial cells in industrial biotechnology. We immobilized Rhodococcus ruber, an important hydrocarbon degrader, on biosurfactant-coated sawdust. A biosurfactant produced by R. ruber in the presence of liquid hydrocarbons was found to enhance rhodococcal adhesion to solid surfaces, and thus, it was used as a hydrophobizing agent to improve bacterial attachment to a sawdust carrier. Compared to previously used hydrophobizers (drying oil and n-hexadecane) and emulsifiers (methyl- and carboxymethyl cellulose, poly(vinyl alcohol), and Tween 80), Rhodococcus biosurfactant produced more stable and homogenous coatings on wood surfaces, thus resulting in higher sawdust affinity to hydrocarbons, uniform monolayer distribution of immobilized R. ruber cells (immobilization yield 29–30 mg dry cells/g), and twofold increase in hydrocarbon biooxidation rates compared to free rhodococcal cells. Two physical methods, i.e., high-resolution profilometry and infrared thermography, were applied to examine wood surface characteristics and distribution of immobilized R. ruber cells. Sawdust-immobilized R. ruber can be used as an efficient biocatalyst for hydrocarbon transformation and degradation.  相似文献   

2.
We have recently isolated a biofilm-producing strain (C208) of Rhodococcus ruber that degraded polyethylene at a rate of 0.86% per week (r 2=0.98). Strain C208 adheres to polyethylene immediately upon exposure to the polyolefin. This initial biofilm differentiates (in a stepwise process that lasts about 20 h) into cell-aggregation-forming microcolonies. Further organization yields “mushroom-like” three-dimensional structures on the mature biofilm. The ratio between the population densities of the biofilm and the planktonic C208 cells after 10 days of incubation was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of extracellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. The biofilm showed a high viability even after 60 days of incubation, apparently due to polyethylene biodegradation.  相似文献   

3.
Alkanotrophic Rhodococcus ruber as a biosurfactant producer   总被引:1,自引:0,他引:1  
In this report we examined the structure and properties of surface-active lipids of Rhodococcus ruber. Most historical interest has been in the glycolipids of Rhodococcus erythropolis, which have been extensively characterised. R. erythropolis has been of interest due to its great metabolic diversity. Only recently has the metabolic potential of R. ruber begun to be explored. One major difference in the two species is that most R. ruber strains are able to oxidise the gaseous alkanes propane and butane. In preparation for investigation of the effects of gas metabolism on biosurfactant production, we set out to characterise the biosurfactants produced during growth on liquid n-alkanes and to compare these with R. erythropolis glycolipids.  相似文献   

4.
In wastewater treatment microbial cultures immobilised on various matrices are used to protect the microbes from confronting shock loads of organic pollutants. Because of the beneficial effect of activated carbon, it is generally used as a carrier material in comparison to other matrices. In this study mutant strain of P. pictorum (MU 174) was immobilised on ricebran based activated carbon. The effect of contact time, pH, particle size, mass of activated carbon, temperature and ionic strength on adsorption of MU 174 on activated carbon were investigated. The adsorption kinetic parameters like K p , K ad and H were also determined.Authors are grateful to Dr. K.V. Raghavan, Director, CLRI for his keen interest in publishing this work. Financial assistance by CSIR/UGC is gratefully acknowledged by Miss S. Chitra.  相似文献   

5.
Whole cells of Rhodococcus ruber DSM 44541 were found to hydrolyze (+/-)-2-octyl sulfate in a stereo- and enantiospecific fashion. When growing on a complex medium, the cells produced two sec-alkylsulfatases and (at least) one prim-alkylsulfatase in the absence of an inducer, such as a sec-alkyl sulfate or a sec-alcohol. From the crude cell-free lysate, two proteins responsible for sulfate ester hydrolysis (designated RS1 and RS2) were separated from each other based on their different hydrophobicities and were subjected to further chromatographic purification. In contrast to sulfatase RS1, enzyme RS2 proved to be reasonably stable and thus could be purified to homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at a molecular mass of 43 kDa. Maximal enzyme activity was observed at 30 degrees C and at pH 7.5. Sulfatase RS2 showed a clear preference for the hydrolysis of linear secondary alkyl sulfates, such as 2-, 3-, or 4-octyl sulfate, with remarkable enantioselectivity (an enantiomeric ratio of up to 21 [23]). Enzymatic hydrolysis of (R)-2-octyl sulfate furnished (S)-2-octanol without racemization, which revealed that the enzymatic hydrolysis proceeded through inversion of the configuration at the stereogenic carbon atom. Screening of a broad palette of potential substrates showed that the enzyme exhibited limited substrate tolerance; while simple linear sec-alkyl sulfates (C(7) to C(10)) were freely accepted, no activity was found with branched and mixed aryl-alkyl sec-sulfates. Due to the fact that prim-sulfates were not accepted, the enzyme was classified as sec-alkylsulfatase (EC 3.1.6.X).  相似文献   

6.
Consumption of aliphatic hydrocarbons by the bacteria Rhodococcus ruber Ac-1513-D and Rhodococcus erythropolis Ac-1514-D grown on mixed n-alkanes and diesel fuel was studied. Consumption of diesel fuel hydrocarbons by the strains was less intense in comparison with the n-alkane mixture. The strains showed differences in growth rate and consumption of the substrates, which suggests that they possess different mechanisms of hydrocarbon uptake.  相似文献   

7.
Consumption of aliphatic hydrocarbons by the bacteria Rhodococcus ruber Ac-1513-D and Rhodococcus erythropolis Ac-1514-D grown on mixed n-alkanes and diesel fuel was studied. Consumption of diesel fuel hydrocarbons by the strains was less intense in comparison with the n-alkane mixture. The strains showed differences in growth rate and consumption of the substrates, which suggests that they possess different mechanisms of hydrocarbon uptake.  相似文献   

8.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

9.
Glyptal, a polyester obtained from phthalic anhydride and glycerol, was used as a support for protein immobilisation. Hydrazide groups were introduced in the polymer and then converted to azide groups, through which protein was covalently immobilised. Amyloglucosidase was used as a model and an insoluble water derivative was synthesised retaining 24 % of the specific activity of the native enzyme. Some properties of this immobilised enzyme were studied: Km (4.54 g.l–1 using starch as substrate), optimal temperature (55°C) and half life (8 days). Furthermore, ferromagnetic-azide-glyptal derivative showed to be useful for the amyloglucosidase immobilisation.  相似文献   

10.
The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation.N-Nitrosodimethylamine (NDMA) is a potent carcinogen that has recently been detected in groundwater, wastewater, and drinking water (1, 2, 17, 18). It forms as a disinfection byproduct in wastewater and drinking water treated with chloramine and other disinfectants (17, 18, 43). NDMA has also been found to be present in aquifers at several military sites that have used 1,1-dimethylhydrazine, a component of liquid rocket propellant that contained NDMA as an impurity (6, 9). Although there is presently no federal maximum contaminant level for NDMA in drinking water, a risk assessment conducted by the U.S. Environmental Protection Agency suggested that concentrations as low as 0.7 ng/liter can increase lifetime cancer risk by 1 × 10−6 (34). In addition, California currently has a 10 ng/liter notification level for NDMA concentrations in drinking water and has recently recommended an even lower public health goal of 3 ng/liter (3, 20). Thus, the presence of even trace concentrations of this chemical in drinking water represents a potential public health concern.The rates and extents of NDMA biodegradation in natural environments, including surface water, sludges, and soils, are highly variable. In some studies, the compound has been reported to be recalcitrant or only partially biodegraded (16, 30, 31); in others, fairly rapid and extensive biodegradation has been previously observed (2, 13, 22, 40). Few studies have been conducted to examine NDMA biodegradation in groundwater. However, the persistence of NDMA derived originally from 1,1-dimethylhydrazine-based rocket fuel over decades in some groundwater aquifers (e.g., Rocky Mountain Arsenal, CO; former Air Force Plant PJKS, CO; and Aerojet Superfund Site, CA) suggests that this molecule can be very recalcitrant (8, 9, 35). At sites where biodegradation has been observed, the organisms responsible and the microbial degradation pathways are largely unknown.The metabolism of NDMA and other nitrosamines by mammals has received extensive study. NDMA requires metabolic activation to the methyldiazonium ion (a strong alkylating agent) to exert its genotoxic effects (1, 19, 34). This activation reaction is catalyzed by specific isozymes of the cytochrome P-450-dependent mixed-function oxidase system and proceeds through an initial α-hydroxylation reaction. Alternately, NDMA can be oxidized by the P-450 system via a denitrosation route, which does not result in the formation of a highly carcinogenic intermediate (11, 28, 37).The bacterial transformation of NDMA has not been studied in significant detail. Several bacteria expressing broad-specificity monooxygenase enzymes have been reported to degrade NDMA via cometabolism. These include the propanotrophs Rhodococcus sp. strain RHA1 (25, 26) and Rhodococcus ruber ENV425 (29) as well as Mycobacterium vaccae JOB5 (25), the methanotroph Methylosinus trichosporium OB3b (42), and the toluene oxidizer Pseudomonas mendocina KR1 (7). We recently characterized the pathway of NDMA transformation used by P. mendocina KR1, a bacterium that utilizes the enzyme toluene-4-monooxygenase (T4MO) to cometabolically degrade NDMA and other anthropogenic pollutants (7, 38). The pathway of NDMA transformation by KR1 differs from the two pathways described for mammals. A majority of the NDMA metabolized by T4MO in this strain is oxidized to N-nitrodimethylamine (NTDMA) and then further to N-nitromethylamine (NTMA), which accumulates as a terminal product (7).In this report, we describe the pathway used by the propanotroph R. ruber ENV425 to catabolize NDMA. This strain was originally isolated from turf soil, where propane was used as the sole carbon source, and was previously reported to oxidize methyl tertiary-butyl ether and other gasoline oxygenates (27). Our data show that the pathway of NDMA degradation mediated by strain ENV425 differs from that mediated by P. mendocina KR1. Rather, the pathway used for transformation of NDMA by ENV425 appears to be similar to the denitrosation pathway catalyzed by various P-450 isozymes in mammals, resulting in the production of nitric oxide (NO), nitrite, nitrate, formaldehyde, formate, and methylamine (MA) (11, 12, 28, 39). A significant fraction of the carbon in the NDMA molecule was released as CO2 by strain ENV425, although growth on NDMA could not be confirmed. However, the bacterium was observed to utilize NDMA as well as the NDMA-degradation intermediates MA and nitrate as sources of nitrogen during growth on propane as a sole carbon and energy source.  相似文献   

11.
Biological oxidation of cyclic ketones normally results in formation of the corresponding dicarboxylic acids, which are further metabolized in the cell. Rhodococcus ruber strain SC1 was isolated from an industrial wastewater bioreactor that was able to utilize cyclododecanone as the sole carbon source. A reverse genetic approach was used to isolate a 10-kb gene cluster containing all genes required for oxidative conversion of cyclododecanone to 1,12-dodecanedioic acid (DDDA). The genes required for cyclododecanone oxidation were only marginally similar to the analogous genes for cyclohexanone oxidation. The biochemical function of the enzymes encoded on the 10-kb gene cluster, the flavin monooxygenase, the lactone hydrolase, the alcohol dehydrogenase, and the aldehyde dehydrogenase, was determined in Escherichia coli based on the ability to convert cyclododecanone. Recombinant E. coli strains grown in the presence of cyclododecanone accumulated lauryl lactone, 12-hydroxylauric acid, and/or DDDA depending on the genes cloned. The cyclododecanone monooxygenase is a type 1 Baeyer-Villiger flavin monooxygenase (FAD as cofactor) and exhibited substrate specificity towards long-chain cyclic ketones (C11 to C15), which is different from the specificity of cyclohexanone monooxygenase favoring short-chain cyclic compounds (C5 to C7).  相似文献   

12.
The present work describes investigations on the bacterial degradation of the alicyclic molecule cyclododecane. It represents a structure where the initial degradative steps have to be similar to a “subterminal” attack as there is no “terminal” part of the molecule. We were able to show that the gram-positive bacterium Rhodococcus ruber CD4 DSM 44394 oxidizes cyclododecane to the corresponding alcohol and ketone, the latter being subject to ring fission by a Baeyer-Villiger oxygenase. This key enzyme is an NADPH- and O2-dependent flavoprotein with a substrate specificity for bigger rings. The further metabolism of the resulting lactone gives rise to an ω-hydroxyalkanoic acid that is susceptible to common β-oxidation. Due to its alicyclic character and its ring size, cyclododecane is comparable to aliphatic bridge components that are an important element in the coal texture. They contribute to the three-dimensional coal structure and thus could serve as a valuable target for the oxidative abilities of R. ruber CD4 to reduce the molecular mass of coal. Received: 2 July 1998 / Received revision: 27 October 1998 / Accepted: 30 October 1998  相似文献   

13.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in the experimental system with liquid paraffin was used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rhodococcus and Arthrobacteria amounted to not more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing with paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   

14.
15.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a constitutive salt-dependent nicotinamide adenine dinucleotide phosphate (NADP)-linked glucose-6-phosphate dehydrogenase. Glucose dehydrogenase and fructose-1,6-bisphosphate aldolase activity could not be detected. It is therefore suggested that Salinibacter metabolizes glucose by the classic Entner-Doudoroff pathway and not by the Embden-Meyerhof glycolytic pathway or by the modified Entner-Doudoroff pathway present in halophilic Archaea of the family Halobacteriaceae, in which the phosphorylation step is postponed. However, activity of 2-keto-3-deoxy-6-phosphogluconate aldolase could not be detected in extracts of Salinibacter cells, whether or not grown in the presence of glucose.  相似文献   

16.
A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to balance osmotic pressure and has very acidic proteins. We thus believe that Sr PYP is an example of a halophilic protein that requires KCl to electrostatically screen the excess negative charge and stabilize the tertiary structure.  相似文献   

17.
A conductimetric biosensor for the detection of acrylonitrile in solution was designed and characterised using whole cells of Rhodococcus ruber NCIMB 40757, which were immobilised into a disc of dimethyl silicone sponge (ImmobaSil). The biosensor described was capable of the detection and quantification of acrylonitrile in aqueous solution, having a linear response to concentrations between 2 and 50 mM (106-2650 ppm) acrylonitrile. The biosensor has been shown to be reproducible with respect to the data obtained over a number of days, and retains stability for a minimum period of at least 5 days before recalibration of the biosensor is required.  相似文献   

18.
Salinibacter ruber is an extremely halophilic bacterium, phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria. Electrospray mass analyses (negative ion) of the total lipid extract of a pure culture of S. ruber shows a characteristic peak at m/z 660 as the most prominent peak in the high-mass range of the spectrum. A novel sulfonolipid, giving rise to the molecular ion [M-H]- of m/z 660, has been identified. The sulfonolipid isolated and purified by thin-layer chromatography was shown by chemical degradation, mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance analysis to have the structure 2-carboxy-2-amino-3-O-(13'-methyltetradecanoyl)-4-hydroxy-18-methylnonadec-5-ene-1-sulfonic acid. This lipid represents about 10% of total cellular lipids, and it appears to be a structural variant of the sulfonolipids found as main components of the cell envelope of gliding bacteria of the genus Cytophaga and closely related genera (W. Godchaux and E. R. Leadbetter, J. Bacteriol. 153:1238-1246, 1983) and of diatoms (R. Anderson, M. Kates, and B. E. Volcani, Biochim. Biophys. Acta 528:89-106, 1978). Since this sulfonolipid has never been observed in any other extreme halophilic microorganism, we consider the peak at m/z 660 the lipid signature of Salinibacter. This study suggests that this novel sulfonolipid may be used as a chemotaxonomic marker for the detection of Salinibacter within the halophilic microbial community in saltern crystallizer ponds and other hypersaline environments.  相似文献   

19.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by glycerol. In contrast to glucose consumption, which starts only after more easily degradable substrates present in yeast extract have been depleted, glycerol is consumed during the earliest growth phases. When U-(14)C-labeled glycerol was added to the culture, up to 25% of the radioactivity was incorporated by the cells. Glycerol kinase activity was detected only in cells grown in the presence of glycerol (up to 90 nmol mg protein(-1) min(-1)). This enzyme functioned over salt concentrations from 0.6 to 2.8 M KCl. No significant activity of NAD-dependent glycerol dehydrogenase was found. It is suggested that Salinibacter may use glycerol as one of its principal substrates in its habitat, the saltern crystallizer ponds.  相似文献   

20.
The time course of the accumulation of triacylglycerols (TAGs) in Rhodococcus opacus PD630 or of TAGs plus polyhydroxyalkanoates (PHA) in Rhodococcus ruber NCIMB 40126 with gluconate or glucose as carbon source, respectively, was studied. In addition, we examined the mobilization of these storage compounds in the absence of a carbon source. R. opacus accumulated TAGs only after the exhaustion of ammonium in the medium, and, with a fixed concentration of the carbon source, the amounts of TAGs in the cells increased with decreasing concentrations of ammonium in the medium. When these cells were incubated in the absence of an additional carbon source, about 90% of these TAGs were mobilized and used as endogenous carbon source, particularly if ammonium was available. R. ruber accumulated a copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate already during the early exponential growth phase, whereas TAGs were synthesized and accumulated mainly during the late exponential and stationary growth phases. In the stationary growth phase, synthesis of TAGs continued, whereas PHA was partially mobilized. In the absence of an additional carbon source but in the presence of ammonium, mobilization of TAGs started first and was then paralleled by the mobilization of PHA, resulting in an approximately 90% and 80% decrease of these storage compounds, respectively. During the accumulation phase, interesting shifts in the composition of the two storage compounds occurred, indicating that the substrates of the PHA synthase and the TAG synthesizing enzymes were provided to varying extents, depending on whether the cells were in the early or late exponential or in the stationary growth phase. Received: 12 January 2000 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号