首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Changes in community attributes due to the influence of anthropogenic activities have been examined primarily using occurrence data with little consideration of associated changes in abundance. To determine how this influences our perception of biotic homogenization, we examined compositional patterns for avian assemblages over space and time along an occurrence–abundance continuum. Location The contiguous United States and southern Canada. Methods We examined avian assemblages at 951 Breeding Bird Survey (BBS) routes from 1970 to 2005 that contained a total of 443 species. We used five dissimilarity indices to estimate compositional patterns along an occurrence–abundance continuum of assemblage structure (from species occurrence to transformed abundance to raw abundance) for 396,925 unique combinations of BBS route pairs. We examined annual plots of dissimilarity by distance between BBS routes pairs to estimate spatial and temporal patterns for each index. Results Dissimilarity declined with increasing distance between route pairs for occurrence and transformed abundance, reaching an asymptote at approximately 2500 km. For raw abundance, dissimilarity peaked at intermediate distances (1000–2500 km) with no evidence of an asymptote. Avian assemblages became more similar over time at all points along the continuum. Occurrence and transformed abundance presented the weakest temporal trends, which were uniform or poorly delineated as a function of distance between routes. Raw abundance presented the strongest temporal trends, which declined in strength with increasing distance between routes. Main conclusions With the addition of abundance, there was a substantial and consistent pattern of degradation of β‐diversity for North American avifauna that differed considerably from that observed from occurrence data alone. The geographical expansion of a few species, which recently benefited from the direct and indirect consequences of anthropogenic activities, probably played a prominent role in these patterns. When broad‐scale expansions in occupancy are evident, minor gains in similarity based on species occurrence can mask more substantial gains in similarity based on local abundance. When abundance information is unavailable, its role can be estimated by how occupancy has responded geographically to anthropogenic activities and the expectations of the abundance–occupancy relationship. Our findings support previous work indicating that widespread and locally abundant species will tend to benefit more from anthropogenic activities, creating a possible synergism that enhances biotic homogenization.  相似文献   

2.
Conservation of rare and endangered species requires assessment of factors that influence the current habitat associations of a species and the role of past habitat degradation in limiting occupancy or abundance. The objective of our 2011–2014 study was to determine how habitat characteristics and wetland history can predict occupancy and abundance patterns of bog turtles (Glyptemys muhlenbergii) at the fringe of their range in the southeastern United States. We used a hurdle model to examine occupancy and abundance patterns while addressing problems associated with zero-inflated data. Occupancy patterns were weakly related to percent of the wetland containing emergent vegetation, whereas abundance patterns were predicted by the percent silt in the wetland substrate, percent forest cover, amount of habitat degradation, and recovery time since past habitat degradation. The effect of historical habitat degradation on abundance rather than occupancy patterns has rarely been documented and its effect is rarely studied in vertebrate populations. Identification of predictors of occupancy and abundance patterns will aid discovery of new populations of bog turtles and improve management of occupied wetlands. © 2019 The Wildlife Society.  相似文献   

3.
Identification of habitat features that are strongly associated with the occurrence of threatened species is important in terms of predicting impacts of habitat change and identifying key habitats for conservation. In this paper, we apply habitat‐based statistical models to predict occupancy patterns of the endangered southern bell frog (Litoria raniformis) across inland New South Wales (Australia). Litoria raniformis previously occupied a wide range of natural and man‐made waterbodies across a large geographic range, including flood plain wetlands, oxbow lagoons, irrigation canals and rice bays. Alteration of natural flooding regimes has affected a large proportion of habitats within the historical range of Litoria raniformis, but it is not clear how these changes have influenced habitat occupancy patterns. Fifty‐two waterbodies were surveyed for presence/absence of Litoria raniformis in 2001 and 2004. Stepwise logistic regression models were generated to select a subset of variables that best predicted occupancy. Using three predictor variables, vacant and occupied habitats could be predicted with an accuracy of 90% and 70%, respectively. The predictor variables were: the interaction between wetland hydrology and complexity of aquatic vegetation, complexity of fringing vegetation and water temperature. While this study demonstrated that a range of waterbody types were occupied by Litoria raniformis, these habitats shared common hydrological conditions and vegetation characteristics. Altered flooding regimes and reductions in the complexity of aquatic and fringing vegetation are likely to increase the probability of localized extinctions of Litoria raniformis populations.  相似文献   

4.
Both forest fragmentation and overhunting have profound effects on the structure of large-vertebrate assemblages in neotropical forests. However, the long-term value of habitat fragments for forest mammals remains poorly understood and few regional scale studies have replicated sampling across spatially independent landscapes. Here, we assess the species occupancy and abundance of midsized to large-bodied mammals within three neighbouring Amazonian forest landscapes varying widely in extent of forest cover. One of these consisted of forest fragments surrounded by semi-natural scrub savannahs that had been occupied by paleoindian populations for at least 7,000 years, whereas forest cover in the other two landscapes was either variegated or continuous. Data on species occurrence and abundance from diurnal and nocturnal line-transect surveys and local interviews in each landscape were used to examine the effects of forest cover and hunting pressure on mammal persistence within forest patches. The extent of forest cover was a key determinant of species persistence across the three landscapes, but populations of large-bodied species were either reduced or driven to local extinction by hunting even in the most forested and least fragmented landscape. Many game and non-game species persisted in forest isolates, even though, individually, these were likely too small to support viable populations. This study indicates that even small, long-term forest fragments may retain significant conservation value if they can be managed within the context of enhanced connectivity across wider fragmented landscapes.  相似文献   

5.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

6.
Wittman SE  Gotelli NJ 《Oecologia》2011,166(1):207-219
Although interference competition is a conspicuous component of many animal communities, it is still uncertain whether the competitive ability of a species determines its relative abundance and patterns of association with other species. We used replicated arena tests to quantify behavioral dominance of eight common species of co-occurring ground-foraging ants in the Siskiyou Mountains of southern Oregon. We found that behavior recorded in laboratory assays was an accurate representation of a colony's ability to monopolize resources in the field. We used interaction frequencies from the behavioral tests to estimate transition probabilities in a simple Markov chain model to predict patterns of relative abundance in a metacommunity that is dominated by behavioral interactions. We also tested whether behavioral interactions between each pair of species could be used to predict patterns of species co-occurrence. We found that the Markov model did not accurately predict patterns of observed relative abundance on either the local or the regional scale. However, we did detect a significant negative correlation at the local scale in which behaviorally dominant species occupied relatively few baits. Pairwise behavioral data also did not predict species co-occurrence in any site. Although interference competition is a conspicuous process in ant communities, our results suggest that it may not contribute much to patterns of relative abundance and species co-occurrence in the system studied here. However, the negative correlation between behavioral dominance and bait occupancy at the local scale suggests that competition-colonization trade-offs may be important in resource acquisition and persistence of behaviorally subordinate species.  相似文献   

7.
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape‐scale attributes. Generalized linear mixed‐effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment‐matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.  相似文献   

8.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

9.
Structure of the species--energy relationship   总被引:2,自引:0,他引:2  
The relationship between energy availability and species richness (the species-energy relationship) is one of the best documented macroecological phenomena. However, the structure of species distribution along the gradient, the proximate driver of the relationship, is poorly known. Here, using data on the distribution of birds in southern Africa, for which species richness increases linearly with energy availability, we provide an explicit determination of this structure. We show that most species exhibit increasing occupancy towards more productive regions (occurring in more grid cells within a productivity class). However, average reporting rates per species within occupied grid cells, a correlate of local density, do not show a similar increase. The mean range of used energy levels and the mean geographical range size of species in southern Africa decreases along the energy gradient, as most species are present at high productivity levels but only some can extend their ranges towards lower levels. Species turnover among grid cells consequently decreases towards high energy levels. In summary, these patterns support the hypothesis that higher productivity leads to more species by increasing the probability of occurrence of resources that enable the persistence of viable populations, without necessarily affecting local population densities.  相似文献   

10.
Distribution models are increasingly being used to understand how landscape and climatic changes are affecting the processes driving spatial and temporal distributions of plants and animals. However, many modeling efforts ignore the dynamic processes that drive distributional patterns at different scales, which may result in misleading inference about the factors influencing species distributions. Current occupancy models allow estimation of occupancy at different scales and, separately, estimation of immigration and emigration. However, joint estimation of local extinction, colonization, and occupancy within a multi‐scale model is currently unpublished. We extended multi‐scale models to account for the dynamic processes governing species distributions, while concurrently modeling local‐scale availability. We fit the model to data for lark buntings and chestnut‐collared longspurs in the Great Plains, USA, collected under the Integrated Monitoring in Bird Conservation Regions program. We investigate how the amount of grassland and shrubland and annual vegetation conditions affect bird occupancy dynamics and local vegetation structure affects fine‐scale occupancy. Buntings were prevalent and longspurs rare in our study area, but both species were locally prevalent when present. Buntings colonized sites with preferred habitat configurations, longspurs colonized a wider range of landscape conditions, and site persistence of both was higher at sites with greener vegetation. Turnover rates were high for both species, quantifying the nomadic behavior of the species. Our model allows researchers to jointly investigate temporal dynamics of species distributions and hierarchical habitat use. Our results indicate that grassland birds respond to different covariates at landscape and local scales suggesting different conservation goals at each scale. High turnover rates of these species highlight the need to account for the dynamics of nomadic species, and our model can help inform how to coordinate management efforts to provide appropriate habitat configurations at the landscape scale and provide habitat targets for local managers.  相似文献   

11.
Historically, diversity in a community was often believed to result primarily from local processes, but recent evidence suggests that regional diversity may strongly influence local diversity as well. We used experimental and observational vegetation data from Konza Prairie, Kansas, USA, to determine if: (1) there is a relationship between local and regional richness in tallgrass prairie vegetation; (2) local dominance reduces local species richness; and (3) reducing local dominance increases local and regional species richness. We found a positive relationship between regional and local richness; however, this relationship varied with grazing, topography and fire frequency. The decline in variance explained in the grazed vegetation, in particular, suggested that local processes associated with grazing pressure on the dominant grasses strongly influenced local species richness. Experimental removal of one of the dominant grasses, Andropogon scoparius , from replicate plots resulted in a significant increase in local species richness compared to adjacent reference plots. Overall all sites, species richness was higher in grazed (192 spp.) compared to ungrazed (158 spp.) areas. Across the Konza Prairie landscape, however, there were no significant differences in the frequency distribution of species occurrences, or in the relationship between the number of sites occupied and average abundance in grazed compared to ungrazed areas. Thus, local processes strongly influenced local richness in this tallgrass prairie, but local processes did not produce different landscape-scale patterns in species distribution and abundance. Because richness was enhanced at all spatial scales by reducing the abundance of dominant species, we suggest that species richness in tallgrass prairie results from feedbacks between, and interactions among, processes operating at multiple scales in space and time.  相似文献   

12.
Ability to predict species distribution in a landscape is of crucial importance for natural resource management and species conservation. Therefore, the understanding of species habitat requirements and spatio-temporal dynamics in occurrence is needed. We examined patch occupancy patterns of the Siberian flying squirrel Pteromys volans in northern Finland across a seven year study period. Forest patches dominated by mature spruce ( Picea abies ) in a study area (375 km2) were surveyed to monitor the presence or absence of the flying squirrel. The patch occupancy pattern was dynamic: about half of the habitat patches were occupied at least once during the study period and more patches were colonised than were abandoned. Patches that were continuously occupied (i.e. occupied during all sample periods) were typically of high quality (based on habitat and landscape characteristics), continuously unoccupied patches were usually of low quality, and intermediate quality patches were occupied intermittently. The variables explaining patch occupancy were similar each year, and a statistical model based on data from the year 2000 also predicted occupancy in 2004 with similar accuracy. However, data from a single survey were inadequate for identifying patches used intermittently by flying squirrels. Despite inconsistent occupancy, these patches may be important for the local persistence of flying squirrels. The dynamic occupancy pattern may thus affect estimates of suitable habitat area and identification of functional patch networks for landscape planning. These results emphasise the need for follow-up studies to better understand population patterns and processes in time.  相似文献   

13.
The establishment and survival of young individuals of five desert phreatophytes that form dominant or codominant stands round river oases at the southern rim of the Taklamakan Desert was studied to explain the patterns observed in the established vegetation. We hypothesized to find differences between species in the rates of establishment and survival as well as in the susceptibility to grazing. We expected species that grow at largest distances to the groundwater table to establish themselves more successfully and have higher survival rates. In addition, we expected the high grazing and browsing pressure in the oasis foreland to have a negative effect on seedling establishment, with less palatable species being less affected. Exclosure experiments were carried out along the banks of an ephemeral river. Seedlings and shoot or rhizome fragments were planted in either fenced or control plots. In addition, the naturally emerging seedlings after a flooding event were monitored for survival to the subsequent vegetation period. In contrast to expectations, the species did not differ in the survival of planted seedlings and vegetative fragments. However, there were significant differences in the density of spontaneously emerging seedlings. Tamarix ramosissima had a much higher seedling density than the other species. Excluding livestock had a positive effect on the survival of planted seedlings and shoot or rhizome fragments. However, there were no species-specific exclosure effects neither effects on the survival of spontaneously emerging seedling. The exclusion of grazers and browsers might generally enhance the vegetation coverage in the oases forelands, but it does not favour different species disproportionately. In conclusion, the species’ regeneration niches explain only partly the patterns encountered in the established vegetation.  相似文献   

14.
Aim The assumption that ecological patterns at large spatial scales originate exclusively from non‐anthropogenic processes is growing more questionable with the increasing domination of the biosphere by humans. Because common and rare species are known to respond differently to anthropogenic activities at local scales these differential responses could, over time, be reflected in distributional patterns of species richness at larger spatial scales. This work tests the hypothesis that modern processes have played a role in shaping these patterns, by examining recent changes in the structure and composition of assemblages of breeding avifauna over a large geographical extent. Location The portion of North America containing the contiguous United States and southern Canada. Methods Changes in the geographical range structure of breeding avifauna in North America from 1968 to 2003 were analysed in regions containing historically moderate levels of anthropogenic activities. Two geographical measures, extent of occurrence and area of occupancy, were used to identify the level of rarity or commonality of individual species and to estimate, based on a vector analysis, patterns of change in geographical range structure for individual species and avian assemblages. Results More species experienced patterns of geographical range expansion (51%) than contraction (28%). The majority of avian assemblages (43%) displayed patterns of geographical range expansion: common species increased in number and proportion (6%) in association with reciprocal losses in rare and moderately rare species, resulting in a constant level of species richness. The minority of avian assemblages (21%) displayed patterns of geographical range contraction: gains occurred for common species as well as for rare and moderately rare species, resulting in substantial increases in species richness and a decline in the proportion of common species (4%). The remaining avian assemblages presented equivocal patterns characterized by gains in the number and proportion (2%) of common species and gains in species richness. Main conclusions Modern processes have played a role in shaping the distribution patterns of species richness at large spatial scales based on the composition of common and rare species. This suggests that anthropogenic activities cannot be ignored as a possible causal factor when considering ecological patterns at large spatial scales.  相似文献   

15.
Mountains are biodiversity hotspots and provide spatially compressed versions of regional and continental variation. They might be the most cost effective way to measure the environmental associations of regional biotic communities and their response to global climate change. We investigated spatial variation in epigeal ant diversity along a north–south elevational transect over the Soutpansberg Mountain in South Africa, to see to what extent these patterns can be related to spatial (regional) and environmental (local) variables and how restricted taxa are to altitudinal zones and vegetation types. A total of 40,294 ants, comprising 78 species were caught. Ant richness peaked at the lowest elevation of the southern aspect but had a hump-shaped pattern along the northern slope. Species richness, abundance and assemblage structure were associated with temperature and the proportion of bare ground. Local environment and spatially structured environmental variables comprised more than two-thirds of the variation explained in species richness, abundance and assemblage structure, while space alone (regional processes) was responsible for <10%. Species on the northern aspect were more specific to particular vegetation types, whereas the southern aspect’s species were more generalist. Lower elevation species’ distributions were more restricted. The significance of temperature as an explanatory variable of ant diversity across the mountain could provide a predictive surrogate for future changes. The effect of CO2-induced bush encroachment on the southern aspect could have indirect impacts complicating prediction, but ant species on the northern aspect should move uphill at a rate proportional to their thermal tolerance and the regional increases in temperature. Two species are identified that might be at risk of local extinction.  相似文献   

16.
Variation in the distribution and abundance of species across landscapes has traditionally been attributed to processes operating at fine spatial scales (i.e., environmental conditions at the scale of the sampling unit), but processes that operate across larger spatial scales such as seasonal migration or dispersal are also important. To determine the relative importance of these processes, we evaluated hypothesized relationships between the probability of occupancy in wetlands by two amphibians [wood frogs (Lithobates sylvaticus) and boreal chorus frogs (Pseudacris maculata)] and attributes of the landscape measured at three spatial scales in Rocky Mountain National Park, Colorado. We used cost-based buffers and least-cost distances to derive estimates of landscape attributes that may affect occupancy patterns from the broader spatial scales. The most highly ranked models provide strong support for a positive relationship between occupancy by breeding wood frogs and the amount of streamside habitat adjacent to a wetland. The model selection results for boreal chorus frogs are highly uncertain, though several of the most highly ranked models indicate a positive association between occupancy and the number of neighboring, occupied wetlands. We found little evidence that occupancy of either species was correlated with local-scale attributes measured at the scale of individual wetlands, suggesting that processes operating at broader scales may be more important in influencing occupancy patterns in amphibian populations.  相似文献   

17.
18.
Positive abundance–occupancy relationships (AORs) are among the most general macroecological patterns: locally common species are regionally widespread, locally rare species are regionally restricted. In a recent contribution, Wilson (Global Ecology and Biogeography, 2011, 20 , 193–202) made three claims: (1) that AORs are critically dependent on the method used to calculate average abundance; (2) averaging abundance over occupied sites tends to lead to a very high incidence of negative relationships; (3) this represents a statistical artefact that should be considered in studies of AORs. Here we show that this outcome arises in Wilson's simulations purely due to an arbitrary choice of occupancy models and parameter ranges. The resulting negative relationships are not statistical artefacts, but are easily interpreted in terms of spatial aggregation in abundant species. The fact that empirical evidence fails to support a high prevalence of negative AORs suggests, however, that such parameter combinations arise only rarely in nature. We conclude that simulations that are based on untested assumptions, and that produce patterns unsupported by empirical evidence, have limited use in characterizing AORs, and add little to understanding of the processes driving important relationships between local population size and regional occupancy.  相似文献   

19.
Theoretical and analytical problems of the dynamics of distribution and abundance in animal communities were examined. In many communities, species with low abundance and of limited spatial occurrence (i.e., rare species) typically form a conspicuous peak when a frequency distribution of the number of species is constructed with respect to the proportion of sites occupied within an area of distribution. Models of distribution dynamics, including a new model proposed here, were compared with a range of animal community data using a new procedure to assess single- and bi-modal patterns in frequency distributions of spatial occurrence. Data reveal that single-modality with an excess of rare species occurs more frequently than bimodality. Even when bimodality is detected, the mode representing wide-spread species is in the majority of cases smaller than that for rare species. Thus, a new model in which the rate of local extinctions is assumed to be negatively related to patch occupancy (or population abundance) is in better agreement with observed data than earlier models. Some problems of analysis, in particular model assumptions and testing, are discussed.  相似文献   

20.
Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号