首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

2.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

3.
Using fluorescence lifetime microscopy we study the structure of lipid domains in giant unilamellar vesicles made from sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol. Lifetimes and orientation of a derivative of the fluorescent probe DPH embedded in the membrane were measured for binary and ternary lipid mixtures incorporating up to 42 mol % of cholesterol. The results show that adding cholesterol always increases the lifetime of the probe studied. In addition, the analysis of the probe orientation indicates that cholesterol has little influence on the ordering of the sphingomyelin alkyl chains whereas it has a noticeable effect on the structure of the 1,2-dioleoyl-sn-glycero-3-phosphocholine chains. The measurements made on the orientation and lifetime of the probe show the structure of the membrane in its liquid ordered and liquid disordered domains.  相似文献   

4.
We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.  相似文献   

5.
We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar vesicles show that the probe dual emission drastically changes with the lipid bilayer phase, which can be correlated with the difference in their hydration. Using two-photon excitation microscopy on giant unilamellar vesicles, the F2N12S probe was found to bind both Ld and Lo phases, allowing visualization of the individual phases from the fluorescence intensity ratio of its two emission bands. By using a linearly polarized excitation light, a strong photoselection was observed for F2N12S in the Lo phase, indicating that its fluorophore is nearly parallel to the lipid chains of the bilayer. In contrast, the absence of the photoselection with the Ld phase indicated no predominant orientation of the probe in the Ld phase. Comparison of the present results with those reported previously for F2N12S in living cells suggests a high content of the Lo phase in the outer leaflet of the cell plasma membranes. Taking into account the high selectivity of F2N12S for the cell plasma membranes and its suitability for both single- and two-photon excitation, applications of this probe to study membrane lateral heterogeneity in biological membranes are foreseen.  相似文献   

6.
Membrane microdomains and their involvement in cellular processes are part of the current paradigm of biomembranes. However, a better characterization of domains, namely lipid rafts, is needed. In this review, it is shown how the use of time-resolved fluorescence, with the adequate parameters and probes, helps elucidating the type, number, fraction, composition and size of lipid phases and domains in multicomponent model systems. The determination of phase diagrams for lipid mixtures containing sphingolipids and/or cholesterol is exemplified. The use of fluorescence quenching and Förster resonance energy transfer (FRET) are also illustrated. Strategies for studying protein-induced domains are presented. The advantages of using single point microscopic decays and fluorescence lifetime imaging microscopy (FLIM) in systems with three-phase coexistence are explained. Finally, the introduction of FLIM allows studies in live cell membranes, and the nature of the microdomains observed is readily elucidated due to the information retrieved from fluorescence lifetimes.  相似文献   

7.
Lipids in eukaryotic cell membranes have been shown to cluster in "rafts" with different lipid/protein compositions and molecular packing. Model membranes such as giant unilamellar vesicles (GUVs) provide a key system to elucidate the physical mechanisms of raft assembly. Despite the large amount of work devoted to the detection and characterization of rafts, one of the most important pieces of information still missing in the picture of the cell membrane is dynamics: how lipids organize and move in rafts and how they modulate membrane fluidity. This missing element is of crucial importance for the trafficking at and from the periphery of the cell regulated by endo- and exocytosis and, in general, for the constant turnover which redistributes membrane components. Here, we review studies of combined confocal fluorescence microscopy and fluorescence correlation spectroscopy on lipid dynamics and organization in rafts assembled in GUVs prepared from various lipid mixtures which are relevant to the problem of raft formation.  相似文献   

8.
Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that in recent years has found numerous applications for studying biological phenomena. In this article, we scrutinize one of these applications, namely, FCS as a technique for studying leakage of fluorescent molecules from large unilamellar lipid vesicles. Specifically, we derive the mathematical framework required for using FCS to quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, and we describe the appropriate methodology for successful completion of FCS experiments. By use of this methodology, we show that FCS can be used to accurately quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, including leakage of fluorescent molecules of different sizes. To demonstrate the applicability of FCS, we have investigated the antimicrobial peptide mastoparan X. We show that mastoparan X forms transient transmembrane pores in POPC/POPG (3:1) vesicles, resulting in size-dependent leakage of molecules from the vesicles. We conclude the paper by discussing some of the advantages and limitations of FCS as compared to other existing methods to measure leakage from large unilamellar lipid vesicles.  相似文献   

9.
BackgroundThe permeability of a lipid bilayer is a function of its phase state and depends non-linearly on thermodynamic variables such as temperature, pressure or pH. We investigated how shear forces influence the phase state of giant unilamellar vesicles and their membrane permeability.MethodsWe determined the permeability of giant unilamellar vesicles composed of different phospholipid species under shear flow in a tube at various temperatures around and far off the melting point by analyzing the release of fluorescently labelled dextran. Furthermore, we quantified phase state changes of these vesicles under shear forces using spectral decomposition of the membrane embedded fluorescent dye Laurdan.ResultsWe observed that the membrane permeability follows a step function with increasing permeability at the transition from the gel to the fluid phase and vice versa. Second, there was an all-or-nothing permeabilization near the main phase transition temperature and a gradual dye release far off the melting transition. Third, the Laurdan phase state analysis suggests that shear forces induce a reversible melting temperature shift in giant unilamellar vesicle membranes.Major conclusionsThe observed effects can be explained best in a scenario in which shear forces directly induce membrane pores that possess relatively long pore lifetimes in proximity to the phase transition.General significanceOur study elucidates the release mechanism of thermo-responsive drug carriers as we found that liposome permeabilization is not continuous but quantized. Furthermore, the shear force induced melting temperature shift must be taken into consideration when thermo-responsive liposomes are designed.  相似文献   

10.
Giant unilamellar vesicles (GUVs) containing cholesterol often have a wide distribution in lipid composition. In this study, GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC)/cholesterol and 1,2-diphytanoyl-sn-glycero-3-phosphocholine(diPhyPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesterol were prepared from dry lipid films using the standard electroformation method as well as a modified method from damp lipid films, which are made from compositional uniform liposomes prepared using the Rapid Solvent Exchange (RSE) method. We quantified the lipid compositional distributions of GUV by measuring the miscibility transition temperature of GUVs using fluorescence microscopy, since a narrower distribution in the transition temperature should correspond to a more uniform distribution in GUV lipid composition. Cholesterol molecules can demix from other lipids in dry state and form cholesterol crystals. Using optical microscopy, micron-sized crystals were observed in some dry lipid films. Thus, a major cause of GUV lipid compositional heterogeneity is the demixing of lipids in the dry film state. By avoiding the dry film state, GUVs prepared from damp lipid films have a better uniformity in lipid composition, and the standard deviations of miscibility transition temperature are about 2.5 times smaller than that of GUVs prepared from dry lipid films. Comparing the two ternary systems, diPhyPC/DPPC/cholesterol GUVs has a larger cholesterol compositional heterogeneity, which directly correlates with the low maximum solubility of cholesterol in diPhyPC lipid bilayers (40.2±0.5mol%) measured by light scattering. Our data indicate that cholesterol interacts far less favorably with diPhyPC than it does with other PCs. The damp lipid film method also has a potential of preparing GUVs from cell membranes containing native proteins without going through a dry state.  相似文献   

11.
The interaction of dynamin II with giant unilamellar vesicles was studied using two-photon fluorescence microscopy. Dynamin II, labeled with fluorescein, was injected into a microscope chamber containing giant unilamellar vesicles, which were composed of either pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Binding of the fluorescent dynamin II to giant unilamellar vesicles, in the presence and absence of PI(4,5)P2, was directly observed using two-photon fluorescence microscopy. This binding was also visualized using the fluorescent N-methylanthraniloyl guanosine 5-[-thio]triphosphate analogue. The membrane probe 6-dodecanoyl-2-dimethylamine-naphthalene was used to monitor the physical state of the lipid in the giant unilamellar vesicles in the absence and presence of dynamin. A surprising finding was the fact that dynamin II bound to vesicles in the absence of PI(4,5)P2. Activation of the GTPase activity of dynamin II by pure POPC was then shown.  相似文献   

12.
We assayed fusion events between giant unilamellar vesicles (GUVs) and budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus), the envelopes of which have been labeled with the fluorescent dye Alexa Fluor 488. This involves observing the intensity of fluorescence emitted from the lipid bilayer of single GUVs after fusion using laser scanning microscopy. Using this assay system, we found that fusion between single GUVs and BV envelopes was significantly enhanced at around pH 5.0-6.0, which suggests that: (1) envelope glycoprotein GP64-mediated membrane fusion within the endosome of insect cells was reproduced in our artificial system; (2) acidic phospholipids in GUVs are necessary for this fusion, which are in agreement with the previous results with conventional small liposomes including large unilamellar vesicles and multilamellar vesicles; and (3) the efficiency of fusion is significantly affected by membrane properties that can be modulated by adding cholesterol to GUV lipid bilayers. In addition, the microscopic observation of BV-fused single GUVs showed that a weak interaction occurred between BVs and GUVs containing dioleoylphosphatidylserine at pH 6.0-6.5, and components of BV envelopes were unevenly distributed upon fusion with GUVs containing saturated phospholipid with cholesterol. We further demonstrated that when the recombinant membrane protein, adrenergic β2 receptor, was expressed on recombinant BV envelopes, the protein distribution on BV-fused GUVs was also affected by their lipid contents.  相似文献   

13.
Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered–liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.  相似文献   

14.
Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a F?rster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex.  相似文献   

15.
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.  相似文献   

16.
The binding of calcium to whiting (one tryptophan residue) and pike (one tyrosine residue) parvalbumins has been studied by means of kinetic and steady-state fluorescence techniques. The decay curves of the tryptophan and tyrosine fluorescence of the parvalbumins are best fitted by a sum of two exponents for any metal state of the proteins. The data can be interpreted as a nonexponential decay of the fluorescence of a single-type chromophore or in terms of equilibria between compact and relaxed conformers of the parvalbumins in each metal state. Fluorescence quenching by I-ions and effects of H2O/D2O substitution confirm the second interpretation. The constants of the equilibria have been evaluated.  相似文献   

17.
The interactions between actin networks and cell membrane are immensely important for eukaryotic cell functions including cell shape changes, motility, polarity establishment, and adhesion. Actin-binding proteins are known to compete and cooperate using a finite amount of actin monomers to form distinct actin networks. How actin-bundling protein fascin and actin-branching protein Arp2/3 complex compete to remodel membranes is not entirely clear. To investigate fascin- and Arp2/3-mediated actin network remodeling, we applied a reconstitution approach encapsulating bundled and dendritic actin networks inside giant unilamellar vesicles (GUVs). Independently reconstituted, membrane-bound Arp2/3 nucleation forms an actin cortex in GUVs, whereas fascin mediates formation of actin bundles that protrude out of GUVs. Coencapsulating both fascin and Arp2/3 complex leads to polarized dendritic aggregates and significantly reduces membrane protrusions, irrespective of whether the dendritic network is membrane bound or not. However, reducing Arp2/3 complex while increasing fascin restores membrane protrusion. Such changes in network assembly and the subsequent interplay with membrane can be attributed to competition between fascin and Arp2/3 complex to utilize a finite pool of actin.  相似文献   

18.
Lipids and proteins in the plasma membrane are laterally heterogeneous and formalised as lipid rafts featuring unique biophysical properties. However, the self‐assembly mechanism of lipid raft cannot be revealed even its physical properties and components were determined in specific physiological processes. In this study, two‐photon generalised polarisation imaging and fluorescence correlation spectroscopy were used to study the fusion of lipid rafts through the membrane phase and the lateral diffusion of lipids in living breast cancer cells. A self‐assembly model of lipid rafts associated with lipid diffusion and membrane phase was proposed to demonstrate the lipid sorting ability of lipid rafts in the plasma membrane. The results showed that the increased proportion of slow subdiffusion of GM1‐binding cholera toxin B‐subunit (CT‐B) was accompanied with an increased liquid‐ordered domain during the β‐estradiol‐induced fusion of lipid rafts. And slow subdiffusion of CT‐B was vanished with the depletion of lipid rafts. Whereas the dialkylindocarbocyanine (DiIC18) diffusion was not specifically regulated by lipid rafts. This study will open up a new insight for uncovering the self‐assembly of lipid rafts in specific pathophysiological processes.  相似文献   

19.
We have investigated the stability of giant unilamellar vesicles (GUVs) and large unilamellar vesicles (LUVs) of lipid membranes in the liquid-ordered phase (lo phase) against a detergent, Triton X-100. We found that in the presence of high concentrations of Triton X-100, the structure of GUVs and LUVs of dipalmitoyl-PC (DPPC)/cholesterol (chol) and sphingomyelin (SM)/chol membranes in the lo phase was stable and no leakage of fluorescent probes from the vesicles occurred. We also found that ether-linked dihexadecylphosphatidylcholine (DHPC) membranes containing more than 20 mol% cholesterol were in the lo phase, and that DHPC/chol-GUV and DHPC/chol-LUV in the lo phase were stable and no leakage of internal contents occurred in the presence of Triton X-100. In contrast, octylglucoside solution could easily break these GUVs and LUVs of the lo phase membranes and induced internal contents leakage. These data indicate that GUVs and LUVs of the lo phase membranes are very valuable for practical use.  相似文献   

20.
The effect of detergents on giant unilamellar vesicles (GUVs) composed of phosphatidylcholine, sphingomyelin and cholesterol and containing liquid-ordered phase (l(o)) domains was investigated. Such domains have been used as models for the lipid rafts present in biological membranes. The studied detergents included lyso-phosphatidylcholine, the product of phospholipase A2 activity, as well as Triton X-100 and Brij 98, i.e. detergents used to isolate lipid rafts as DRMs. Local external injection of each of the three detergents at subsolubilizing amounts promoted exclusion of l(o) domains from the GUV as small vesicles. The budding and fission processes associated with this vesiculation were interpreted as due to two distinct effects of the detergent. In this framework, the budding is caused by the initial incorporation of the detergent in the outer membrane leaflet which increases the spontaneous curvature of the bilayer. The fission is related to the inverted-cone molecular shape of the detergent which stabilizes positively curved structures, e.g. pores involved in vesicle separation. On the other hand, we observed in GUVs neither domain formation nor domain coalescence to be induced by the addition of detergents. This supports the idea that isolation of DRM from biological membranes by detergent-induced extraction is not an artifact. It is also suggested that the physico-chemical mechanisms involved in l(o) domain budding and fission might play a role in rafts-dependant endocytosis in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号