首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The crucial role of homochirality and chiral homogeneity in the self-replication of contemporary biopolymers is emphasized, and the experimentally demonstrated advantages of these chirality attributes in simpler polymeric systems are summarized. The implausibility of life without chirality and hence of a biogenic scenario for the origin of chiral molecules is stressed, and chance and determinate abiotic mechanisms for the origin of chirality are reviewed briefly in the context of their potential viability on the primitive Earth. It is concluded that all such mechanisms would be non-viable, and that the turbulent prebiotic environment would require an ongoing extraterrestrial source for the accumulation of chiral molecules on the primitive Earth. A scenario is described wherein the circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae engenders asymmetric photolysis of the racemic constituents in the organic mantles on interstellar dust grains, whereupon these chiral constituents are transported repetitively to the primative Earth by direct accretion of the interstellar dust or through impacts of comets and asteroids.  相似文献   

2.
Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.  相似文献   

3.
Having concluded that abiotic terrestrial mechanisms would have been ineffectual for the origin of terrestrial homochirality, we have proposed an alternative extraterrestrial scenario involving stereoselective ultraviolet photolysis of the racemic constituents of interstellar grain mantles by circularly polarized synchrotron radiation from neutron stars, followed by terrestrial accretion of the resulting chiral molecules via cometary impact. Recently L. Keszthelyi (1995) has reviewed a number of our arguments and advanced several erroneous calculations and conclusions purporting to negate them. We offer here points of rebuttal to Keszthelyi's criticisms, and support our inferences with recent data regarding indigenous enantiomeric excesses of L-amino acids in the Murchison meteorite.  相似文献   

4.
A sequential model is proposed regarding the origin of biological chirality. Three major stages are presumed: a symmetry breaking (prebiotic chiral disruption in enantiomeric mixtures of monomers), a chiral amplification (prebiotic increase of the chiral character of the monomers affected first by the symmetry breaking), and a chiral expansion (proto biological increase of the chiral character and spread of the chirality to molecules which were less affected by prebiotic chiralizations). As a symmetry-breaking mechanism, the model proposed by Deutsch (1991) is used, which involves a dissymmetric exposure of amino acids (AA) to ultraviolet circularly polarized light (UV-CPL) on evaporative seashores. It is presumed that the chiral amplification, up to a protobiologic significance, was influenced by a periodic overlapping of two abiotic events, a synchronization between tidal-based hydrous–anhydrous cycles, and littoral asymmetric photolysis cycles. This long-term astronomic asymmetry acted around 3.8–4.2 billion years ago and was unique to the Earth in our solar system. It is also presumed that the abiotic symmetry breaking is heterogenous, that only a few l-AAs were used in the beginning, and that the chirality expanded later to all 20 AAs based on a coevolutionary strategy of the genetic code and on a physiological relationship between AAs. In this scenario the d-chirality of pentoses in polynucleotides was attributed to both d-pentose/l-AA relationships and to a structural evolution. Received: 10 May 1996 / Accepted: 13 August 1996  相似文献   

5.
The physical, chemical and astrophysical processes by which chiral prebiotic molecules can be produced in interstellar dust and later delivered safely to the earth are considered. A laboratory analog experiment on the irradiation by circularly polarized UV light of mirror image molecules at the low temperatures of interstellar dust demonstrates that a substantial degree of chirality can be produced by irradiation of the dust by circularly polarized light from pulsars whose mean brightness and distribution in the Milky Way provide the energetic photons. The chirality is then preserved by cold aggregation of the dust into low density fragile nuclei. The thermal evolution of comets following them from birth through billions of years in the Oort cloud and back to the inner solar system results in preservation of dust organics in largely pristine form — even including effects of radiogenic heating. Physical justification for the cushioned transfer of fragments of the fluffy comets impacting the earth's atmosphere provides a conceptual basis for depositing significant concentrations of interstellar prebiotic molecules. Chiral amplification in water on the earth is presumed to be enhanced by this local concentration. If chiral molecules are discovered in comet nucleus material which will some day be returned to the laboratory, we may have in our hands the same building blocks from which we evolved.  相似文献   

6.
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.  相似文献   

7.
Biopolymers like DNA and proteins are strongly selective towards the chirality of their monomer units. The use of homochiral monomers is regarded as essential for the construction and function of biopolymers; the emergence of the molecular asymmetry is therefore considered as a fundamental step in Chemical Evolution. This work focuses on physicochemical mechanisms for the origin of biomolecular asymmetry. Very recently two groups, one from Allamandola at NASA Ames and the other from our Inter-European team, demonstrated simultaneously the spontaneous photoformation of a variety of chiral amino acid structures under simulated interstellar conditions. Since both groups used unpolarized light for the photoreaction the obtained amino acids turned out racemic as expected. The obtained experimental data support the assumption that tiny ice grains can furthermore play host to important asymmetric reactions when irradiated by interstellar circularly polarized ultraviolet light. It is possible that such ice grains could have become incorporated into the early cloud that formed our Solar System and ended up on Earth, assisting life to start. Several lines of evidence suggest that some of the building blocks of life were delivered to the primitive Earth via (micro-) meteoroids and/or comets. These results suggest that asymmetric interstellar photochemistry may have played a significant part in supplying Earth with some of the enantioenriched organic materials needed to trigger life. The search for the origin of biomolecular homochirality leads to a strong interest in the fields of asymmetric photochemistry with special emphasis on absolute asymmetric synthesis. We outline here the theoretical background on asymmetric interstellar ice photochemistry, summarize recent concepts and advances in the field, and discuss briefly its implications. The obtained data are crucial for the design of the enantioselective COSAC GC-MS experiment onboard the ROSETTA spacecraft to a comet to be launched in the very near future.  相似文献   

8.
THE NATURE AND EVOLUTION OF INTERSTELLAR ICES   总被引:2,自引:0,他引:2  
The evolution of icy grain mantles is governed by the environment in which they exist. This review presents an overview of the study of the molecules that make up the mantles and discusses their relevance to the origin of life. Models predict two phases of mantle growth during cloud collapse: simple polar and nonpolar molecules dominate the mantle layers at early and late times, respectively (Section 1). The effect of processing on grain mantle composition and the connection between organics in grain mantles and prebiotic chemistry is introduced. Section 2 describes how infrared spectroscopy of dense cloud sources, combined with theoretical models and laboratory data, gives us information on the composition and abundance of the ices in varying regions. The observed features and how they are used as diagnostics of mantle evolution are discussed in Section 3. This section also discusses the importance of these molecules to prebiotic chemistry. Section 4 compares grain mantle composition in different low-mass star forming regions, which best represent the solar birthplace. The final section (Section 5) summarizes the information presented, emphasizing the link between the study of interstellar dust and the origin of life.  相似文献   

9.
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.  相似文献   

10.
G E Tranter 《Bio Systems》1987,20(1):37-48
The violation of parity by the weak interactions ensures that enantiomeric chiral molecules have inequivalent energies, one being inherently stabilized with respect to the other. These parity-violating energy differences have been calculated for a number of fundamental biomolecules including a series of alpha-amino acids, polypeptide structures, and a representative of the sugar series together with its variation over a possible prebiotic reaction path leading to alpha-amino acids. In each case the natural enantiomer found in terrestrial biochemistry was shown to be intrinsically stabilized and preferred over its unnatural enantiomer. The significance of these results in accounting for the prebiotic origins of the terrestrial biomolecular homochirality is discussed and the possible consequences of parity-violating energy differences in mineral catalysts during the prebiotic era considered.  相似文献   

11.
The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only slight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.  相似文献   

12.
The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.  相似文献   

13.
A Brack  G Spach 《Bio Systems》1987,20(1):95-98
One of the main characteristics of terrestrial life is the role of optically active organic substances. Thus a search for chiral compounds and optical activity on an extraterrestrial body may give an indication of the presence of life, either fossilized or still in existence. If only abiotic conditions are prevailing the same search may still provide interesting information on the possible origins of homochiral families of biomolecules on Earth (e.g. the amino acids). In this respect, Saturn's satellite Titan is exemplary. A list of some of the most simple chiral derivatives devoid of oxygen atoms possibly present on Titan is presented. The interest of an investigation of optical activity is discussed taking into account some significant parameters. This raises numerous difficult technical problems which once solved may be helpful for further exploration of other planets.  相似文献   

14.
We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a late bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.  相似文献   

15.
How life on Earth began remains an unexplained scientific problem. This problem is nuanced in its practical details and the way attempted explanations feedback with questions and developments in other areas of science, including astronomy, biology, and planetary science. Prebiotic chemistry attempts to address this issue theoretically, experimentally, and observationally. The ease of formation of bioorganic compounds under plausible prebiotic conditions suggests that these molecules were present in the primitive terrestrial environment. In addition to synthesis in the Earth's primordial atmosphere and oceans, it is likely that the infall of comets, meteorites, and interplanetary dust particles, as well as submarine hydrothermal vent synthesis, may have contributed to prebiotic organic evolution. The primordial organic soup may have been quite complex, but it did not likely include all of the compounds found in modern organisms. Regardless of their origin, organic compounds would need to be concentrated and complexified by environmental mechanisms. While this review is by no means exhaustive, many of the issues central to the state of the art of prebiotic chemistry are reviewed here.  相似文献   

16.
Astrobiological studies of abiotic organic chemistry, such as it is observed in interstellar molecular clouds or found in comets and meteorites, offer a glimpse of the chemical evolution that preceded the onset of life. They also allow to evaluate the possibility that the molecules produced through the long cosmic history of the biogenic elements contributed to the early Earth organic pool and facilitated prebiotic molecular evolution. Presented at: International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   

17.
One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption. d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.  相似文献   

18.
Three generations of organic molecules in space are considered: interstellar molecules, molecules synthesised in protosolar cloud and molecules synthesised on the Earth. It is shown that there is no possibilities for amino acid polymers to be synthesised under interstellar cloud conditions. Molecules of the second generation were disintegrated during the Earth accumulation period. The problem of the origin of life is connected with the evolution of molecules of the third generation.  相似文献   

19.
In the present review we analyze the available literature on the distribution of dust in the Universe, methods of its observation and determination of the chemical composition, and the roles for terrestrial prebiotic chemistry. The most plausible natural sources of dust on the Earth in the prebiotic era are sedimentation of interplanetary dust, meteoritic and cometary impacts, volcanic eruptions, and soil microparticulates; the interplanetary medium being among the most powerful supplier of the dust matter. Two fundamental roles of dust particles for the origins of life are considered: (1) catalytic formation of prebiotic compounds; and (2) delivery of organic matter to the Earth by space dust particles. Due to the fact that there is only approximate information on the chemical composition and properties of interstellar, circumstellar, and major part of interplanetary dust, even the simulating experiments are difficult to perform. Until these gaps are filled, it seems reasonable to focus efforts of the scientists dealing with dust-driven catalytic formation of prebiotically important compounds on the volcanic and meteoritic/cometary impact environments.  相似文献   

20.
Theoretical and experimental models for autocatalytic systems leading to the prebiotic origin of chiralityvia the spontaneous symmetry breaking (resolution) of racemic substrates are reviewed. Of the experimental models so far studied, only 2nd order assymetric transformations during crystallization of optically labile enantiometers, leading to their spontaneous resolution under racemizing conditions (SRURC) have been successful. Our objective was to investigate in further detail the most promising of these systems from the point of view of its overall efficiency and its potential viability as a mechanism for the spontaneous generation of molecular chirality on the prebiotic Earth. To this end the 1,4-benzo-diazepinooxazole derivative XI, having a single asymmetric carbon atom, has been synthesized. We here confirm a report in the literature that (±)-XI undergoes SRURC in methanol, both on crystallization and as a slurry. The total spontaneous resolution of (±)-XI has been achieved in a yield of 99%, of which 80% had an optical purity ofca. 93%. Arguments are presented that SRURC of racemic substrates, while thus demonstrably effective in laboratory experiments, was probably not of major importance for the origin or amplification of molecular chirality on the primitive earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号