首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of PtK1 cells with 5 mM acrylamide for 4 hr induces reversible dephosphorylation of keratin in concert with reversible aggregation of intermediate filaments (Eckert and Yeagle, Cell Motil. Cytoskeleton 11:24-30, 1988). We have examined this phenomenon by 1) in vitro phosphorylation of isolated PtK1 keratin filaments and 2) combined treatments of PtK1 cells with both acrylamide and agents which elevate intracellular cAMP levels. PtK1 keratins were incubated in gamma-32P-ATP in the presence or absence of cAMP-dependent kinase (A-kinase) and cAMP. Levels of phosphorylation were analyzed by electrophoresis and autoradiography. Phosphorylation of keratin polypeptides (56 kD, 53 kD, 45 kD, 40 kD) occurred without added kinase, suggesting the presence of an endogenous kinase which remains with intermediate filaments in residues of Triton X-100 extracted cells. Phosphorylation levels were increased by A-kinase but not by cAMP alone, indicating the presence of cAMP-dependent phosphorylation sites in addition to sites phosphorylated by the endogenous kinase. To study the possible role of cAMP-dependent phosphorylation in acrylamide-induced aggregation of keratin filaments, we treated cells with acrylamide in the presence of 8-bromo-cAMP (brcAMP), pertussis toxin (PT), isobutylmethylxanthine (IBMX), or forskolin, which increase intracellular cAMP levels. The distribution and phosphorylation levels of keratin filaments, as well as intracellular cAMP levels, were determined for each of these treatments. In addition to aggregation and dephosphorylation of keratin filaments reported previously, treatment of cells with acrylamide alone also results in reduced levels of intracellular cAMP. 8-bromo-cAMP, IBMX, and forskolin prevent acrylamide-induced aggregation of keratin filaments and result in both normal levels of keratin phosphorylation and normal intracellular cAMP levels. PT was apparently ineffective. These observations suggest that 1) PtK1 keratins are phosphorylated by cAMP-dependent kinase and an endogenous, cAMP-independent kinase and 2) alteration of levels of cAMP-dependent phosphorylation may be involved in aggregation of keratin filaments in response to acrylamide.  相似文献   

2.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

3.
Prostaglandin E2 (PGE2) synergistically enhances the receptor activator for NF-kappa B ligand (RANKL)-induced osteoclastic differentiation of the precursor cells. Here we investigated the mechanisms of the stimulatory effect of PGE2 on osteoclast differentiation. PGE2 enhanced osteoclastic differentiation of RAW264.7 cells in the presence of RANKL through EP2 and EP4 prostanoid receptors. RANKL-induced degradation of I kappa B alpha and phosphorylation of p38 MAPK and c-Jun N-terminal kinase in RAW264.7 cells were up-regulated by PGE2 in a cAMP-dependent protein kinase A (PKA)-dependent manner, suggesting that EP2 and EP4 signals cross-talk with RANK signals. Transforming growth factor beta-activated kinase 1 (TAK1), an important MAPK kinase kinase in several cytokine signals, possesses a PKA recognition site at amino acids 409-412. PKA directly phosphorylated TAK1 in RAW264.7 cells transfected with wild-type TAK1 but not with the Ser412 --> Ala mutant TAK1. Ser412 --> Ala TAK1 served as a dominant-negative mutant in PKA-enhanced degradation of I kappa B alpha, phosphorylation of p38 MAPK, and PGE2-enhanced osteoclastic differentiation in RAW264.7 cells. Furthermore, forskolin enhanced tumor necrosis factor alpha-induced I kappa B alpha degradation, p38 MAPK phosphorylation, and osteoclastic differentiation in RAW264.7 cells. Ser412 --> Ala TAK1 abolished the stimulatory effects of forskolin on those cellular events induced by tumor necrosis factor alpha. Ser412 --> Ala TAK1 also inhibited the forskolin-induced up-regulation of interleukin 6 production in RAW264.7 cells treated with lipopolysaccharide. These results suggest that the phosphorylation of the Ser412 residue in TAK1 by PKA is essential for cAMP/PKA-induced up-regulation of osteoclastic differentiation and cytokine production in the precursor cells.  相似文献   

4.
In intact goldfish xanthophores, the phosphorylation of a pigment organelle (carotenoid droplet) protein, p57, appears to play an important role in adrenocorticotropin (ACTH)- or cAMP-induced pigment organelle dispersion while the dephosphorylation of this protein upon withdrawal of ACTH or cAMP is implicated in pigment aggregation. In this paper, we report the cAMP-dependent phosphorylation of this protein in cell-free extracts of xanthophores as determined by the incorporation of 32P from [gamma-32P]ATP. As is the case in intact cells, p57 is the predominant protein phosphorylated in the presence of cAMP. The cAMP-dependent protein kinase which phosphorylates p57 is not bound to the isolated organelles but is found in the soluble portion of the cell extracts. Hence, the phosphorylation of p57 requires the carotenoid droplets bearing the substrate, soluble extract containing the kinase, cAMP (half-maximal activation at 0.5 microM), and Mg2+ (optimal at 5 mM or higher). The presence of protein phosphatase(s) in these extracts was shown indirectly by the stimulation of phosphorylation by fluoride. The phosphorylation of p57 does not appear to require a cell-specific kinase as soluble extracts of goldfish dermal nonpigment cells also phosphorylate p57 associated with isolated carotenoid droplets. Furthermore, using a constant amount of carotenoid droplets, a linear relationship was demonstrated between the rate of p57 phosphorylation and the amount of extract present in the assays. These results suggest that p57 is phosphorylated directly by a cAMP-dependent protein kinase and that the activity of this enzyme is important in regulating the intracellular movement of the pigment organelles of the xanthophore.  相似文献   

5.
Signaling by cAMP-dependent protein kinase (PKA) plays an important role in the regulation of mammalian sperm motility. However, it has not been determined how PKA signaling leads to changes in motility, and specific proteins responsible for these changes have not yet been identified as PKA substrates. Anti-phospho-(Ser/Thr) PKA substrate antibodies detected a sperm protein with a relative molecular weight of 270,000 (p270), which was phosphorylated within 1 min after incubation in a medium supporting capacitation. Phosphorylation of p270 was induced by bicarbonate or a cAMP analog, but was blocked by the PKA inhibitor H-89, indicating that p270 is likely a PKA substrate in sperm. In addition, phosphorylation of p270 was inhibited by stearated peptide st-Ht31, suggesting that p270 is phosphorylated by PKA associated with an A-kinase anchoring protein (AKAP). AKAP4 is the major fibrous sheath protein of mammalian sperm and tethers regulatory subunits of PKA to localize phosphorylation events. Phosphorylation of p270 occurred in sperm lacking AKAP4, suggesting that AKAP4 is not involved directly in the phosphorylation event. Phosphorylated p270 was enriched in fractionated sperm tails and appeared to be present in multiple compartments including a detergent-resistant membrane fraction. PKA phosphorylation of p270 within 1 min of incubation under capacitation conditions suggests that this protein may have an important role in the initial signaling events that lead to the activation and subsequent hyperactivation of sperm motility.  相似文献   

6.
7.
A specific 46,000/50,000 molecular weight protein substrate for both cAMP-dependent protein kinase (cAK) and cGMP-dependent protein kinase (cGK) extensively characterized and purified from human platelets was found to be present also in human T-lymphocytes, B-lymphocytes and other cells and tumour cell lines. This protein termed vasodilator-stimulated phosphoprotein (VASP) was present in cytosol and membranes of lymphocytes. Addition of exogenous purified cAK or cGK to lymphocyte cytosol or membranes converted 80-90% of VASP to its phosphoform. Endogenous VASP phosphorylation in both cytosol and membranes was stimulated by the addition of cAMP but not by cGMP. With intact lymphocytes, prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) induced an increase of cAMP and converted 70% of VASP to its phosphoform. In contrast, an increase of cGMP was not associated with VASP phosphorylation although cGK was detected in lymphocytes. These data support the hypothesis that VASP phosphorylation may be an important component of cAMP-mediated regulation of lymphocyte function.  相似文献   

8.
Hans U. Lutz 《FEBS letters》1984,169(2):323-329
In contrast to the properties of spectrin obtained from [32P]phosphate-labeled red cells, purified spectrin dimer could be phosphorylated by a cAMP-dependent protein kinase from bovine heart. Both spectrin bands were phosphorylated. Spectrin band 2 contained in addition to autophosphorylated peptides several phosphopeptides that were distinct from autophosphorylated ones. The cAMP-dependent phosphorylation of spectrin band 1 was modulated by reducing agent and the concentration of spectrin. At high concentrations spectrin band 2 was predominantly labeled. The cAMP-dependent phosphoform of spectrin band 2 had a pI slightly higher than that of autophosphorylated spectrin band 2, but lower than that of ankyrin.  相似文献   

9.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

10.
While clear evidence exists for the regulation of the phosphorylation of the very basic high mobility group (HMG) and histone chromatin proteins, the physiological role of their phosphorylation remains poorly understood. Elucidation of these roles has been difficult, in part, because of the inability to obtain sufficient quantities of purified phosphorylated derivatives. We have used Mono S cation-exchange chromatography to prepare milligram quantities of pure Ser 6-phosphorylated HMG 14 (Ser 6-PO4-HMG) from unphosphorylated Mono S-purified calf thymus HMG 14 following in vitro phosphorylation with cAMP-dependent protein kinase (A-kinase). In one step, this technique separates the phosphorylated derivative from A-kinase, ATP, unphosphorylated HMG 14, and a minor phosphorylated by-product which evidence suggests may be the previously reported Ser 6, 24-diphospho-HMG 14. Mono S chromatography also enhances the purity of calf thymus HMG 14 prepared by perchloric acid extraction, acetone and ethanol precipitations, and CM-Sephadex chromatography. In addition, it permits the detection of apparent microheterogenous forms of both unphosphorylated and Ser 6-PO4-HMG 14. The significant reductions in binding affinity resulting from the incorporation of phosphate groups into HMG 14 suggest that Mono S chromatography could have more general application in the isolation of phosphorylated derivatives of other basic proteins, including other chromatin-associated DNA-binding proteins which are known to undergo specific phosphorylation. It would especially be useful when the proteins and their phosphorylated derivatives bind more tightly to Mono S than the kinases used for their phosphorylation.  相似文献   

11.
Y Yada  S Nagao  Y Okano  Y Nozawa 《FEBS letters》1989,242(2):368-372
Phosphoinositide-specific phospholipase C (PLC) activity of human platelet membranes was activated by the nonhydrolyzable guanine nucleotide GTP gamma S. This activation did not occur in either membranes prepared from dibutyryl cyclic AMP-pretreated platelets (A-membranes) or those prepared from untreated cells and subsequently incubated with cyclic AMP (cAMP) (B-membranes). This cAMP-mediated inhibition was abolished in the presence of inhibitors of cAMP-dependent protein kinase (A-kinase), suggesting that the inhibition was due to phosphorylation of (a) protein component(s). No significant differences were observed in the basal PLC activity and the extent of pertussis toxin-catalyzed ADP-ribosylation among control membranes and the two types of phosphorylated membranes (A- and B-membranes). GTP-binding activities of Gs, Gi and GTP-binding proteins of lower molecular masses were not altered by the phosphorylation of the membranes. These findings suggest that a GTP-binding protein is involved in the GTP gamma S-mediated activation of PLC and that cAMP (plus A-kinase) inhibits this activation by phosphorylating a membrane protein (probably a 240-kDa protein), rather than the GTP-binding protein or PLC itself. It is likely that this phosphorylation uncouples the GTP-binding protein from PLC.  相似文献   

12.
Soybean proteins were subjected to phosphorylation with cyclic adenosine monophosphate- dependent protein kinase (A-kinase). As a result, acidic subunits of the 11S fraction were found to be phosphorylated by A-kinase. To estimate the effect of the phosphorylation, 11S acidic subunits were isolated and subjected to A-kinase phosphorylation. The optimal enzyme amount and Mg2 + concentration for the phosphorylation of 11S acidic subunits were determined to be 1.5U/ml and 1.6 mm, respectively. The rate of phosphorylation was 2mol/mol acidic subunits (MW 38,000) under the above conditions. The protein structures of 11S acidic subunits, as determined from UV and CD spectra, were slightly affected by the enzymatic phosphorylation.  相似文献   

13.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

14.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

15.
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.  相似文献   

16.
The rat pituitary cell line GH3 contains a high molecular weight microtubule-associated protein with properties characteristic of microtubule-associated protein-2 (MAP-2). The 280-kDa protein is selectively immunoprecipitated by antibodies to authentic bovine brain MAP-2 and is phosphorylated at appropriate sites by cAMP-dependent protein kinase (cAMP kinase) and multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Although MAP-2 is a minor cellular constituent, it can be immunoprecipitated from [32P]Pi-labeled GH3 cells and shown to contain a high level of basal phosphorylation. Vasoactive intestinal peptide, forskolin, 3-isobutyl-1-methylxanthene, or cholera toxin, treatments which increase cellular cAMP levels, or dibutyryl cAMP stimulate phosphorylation of specific sites on MAP-2 without significantly increasing its high state of basal phosphorylation. Phosphopeptide mapping reveals that the sites phosphorylated by cAMP kinase in vitro are the same sites whose phosphorylation in situ increases following stimulation of GH3 with agents that activate cAMP kinase. Increasing intracellular Ca2+ levels in GH3 cells also stimulates phosphorylation of MAP-2 but at sites distinct from those phosphorylated following treatment with cAMP inducing agonists. Phosphopeptide mapping indicates that the sites phosphorylated by CaM kinase in vitro are the same sites whose phosphorylation in situ increases following Ca2(+)-mediated stimulation. We conclude that activation of cAMP- and Ca2(+)-based signaling pathways leads to phosphorylation of MAP-2 in GH3 cells and that cAMP kinase and CaM kinase mediate phosphorylation by these pathways, respectively.  相似文献   

17.
We previously identified p65/L-plastin as a phosphorylated protein in LPS-stimulated macrophages and determined its phosphorylation site. In vitro kinase assay using peptide substrates revealed that LPS-stimulated kinase activity selectively phosphorylated their serine-5 (Ser-5) residue. Kinase inhibitors for cAMP-dependent kinase such as H-89 inhibited the Ser-5 phosphorylation, but cAMP was not essential for the kinase activity. The LPS-stimulated kinase activity in cytosol fractions of macrophages was recovered as a sharp peak by anion exchange chromatography. These findings suggest that an as yet unknown H-89-sensitive serine kinase is rapidly activated by LPS stimulation and then phosphorylates p65/L-plastin, playing a vital role in macrophage activation.  相似文献   

18.
We previously described the isolation of a variant subline of HL-60 cells that does not differentiate in response to nitric oxide (NO)-generating agents or to cGMP analogs [7]. The variant cells have normal guanylate cyclase activity and normal NO-induced increases in the intracellular cGMP concentration. We now show that the variant cells have normal cGMP-dependent protein kinase (G-kinase) activity, both by an in vitro and in vivo assay, and using two-dimensional gel electrophoresis we have identified six G-kinase substrates in the parental cells. Of these six proteins, we found considerably less phosphorylation of one of the proteins in the variant cells than in parental cells, both in vitro and in intact cells, and by 35S-methionine/35S-cysteine incorporation we found much less of this protein in the variant cells than in parental cells. The protein is a shared substrate of cAMP-dependent protein kinase (A-kinase); since cAMP analogs still induce differentiation of the variant cells, it appears that the NO/cGMP/G-kinase and cAMP/A-kinase signal transduction pathways share some but not all of the same target proteins in inducing differentiation of HL-60 cells.  相似文献   

19.
We previously observed that Ser378 in the heparin-binding domain of vitronectin becomes phosphorylated by a protein kinase in plasma upon addition of ATP and divalent cations. We now report that purified plasma vitronectin contains approximately 2.5 mol of phosphate per mol of protein and that vitronectin becomes phosphorylated during biosynthesis in human hepatoma (HepG2) cells. In vitro, rabbit muscle cAMP-dependent protein kinase specifically phosphorylates Ser378 in single-chain (75 kDa) vitronectin but does not phosphorylate the two-chain (65/10 kDa) form cleaved at Arg379. Heparin affects neither the time course nor the extent of phosphorylation of Ser378 at neutral pH. The extent of phosphorylation of Ser378 achieved with cAMP-dependent protein kinase (greater than or equal to 0.3 mol phosphate per mol vitronectin) is greater than that obtainable in plasma and should enable comparisons to be made of the activities of the native and phosphorylated forms.  相似文献   

20.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号