首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four lactating dairy cows were used in two experiments to study the effects of the roughage to concentrate ratio in the diet on nitrogen balance, plasma urea, urinary urea, milk urea and urinary purine derivatives. The use of the allantoin to creatinine ratio in spot samples of urine as an index of the urinary allantoin excretion was also evaluated. Four isoenergetic and isonitrogenous diets were formulated according to a 2 × 2 factorial arrangement. Factor I was concentrate content. The roughage to concentrate ratios were 65:35 and 35:65 for the high roughage and high concentrate diets, respectively. Factor II was fat content, which was 2.8% and 5.8% for the low and high fat diets, respectively. In Experiment 1 cows were fed diets with low fat content, and in Experiment 2 cows were fed diets with high fat content. In both experiments, diets were fed according to a change-over design. Nitrogen balance was not affected by the treatments. In cows fed high concentrate diets the amount and the proportion of nitrogen excreted in milk, as well as milk production was higher than in cows fed the high roughage diets. In both experiments, as an overall effect, the urea levels in plasma, urine and morning milk were higher, although the total urinary excretion of urea was lower, for the high concentrate diets. Urinary allantoin excretion was higher, although not significantly in Experiment 1, for the high concentrate diets. The allantoin to creatinine ratio in spot samples of urine showed the same pattern as the total allantoin excretion. Urinary creatinine excretion appeared to be affected by the diet.  相似文献   

2.
The effect of thiourea on ureide metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
The wild-type strain of Neurospora crassa Em 5297a can utilize allantoin as a sole nitrogen source. The pathway of allantoin utilization is via its conversion into allantoic acid and urea, followed by the breakdown of urea to ammonia. This is shown by the inability of the urease-less mutant, N. crassa 1229, to grow on allantoin as a sole nitrogen source and by the formation of allantoate and urea by pre-formed mycelia of this mutant. In the wild strain (Em 5297a) thiourea is tenfold more toxic on an allantoin medium than on an inorganic nitrogen medium; allantoin as well as urea counteract thiourea toxicity in the allantoin nitrogen medium. This selective toxicity of thiourea for the mould utilizing allantoin nitrogen does not, however, result in an impairment of allantoin uptake, allantoinase activity or the formation of urea from allantoin. The only process affected by thiourea is the synthesis of urease; urea antagonizes this effect of thiourea in N. crassa.  相似文献   

3.
The efficiency with which dietary protein is used affects the nitrogen excretion by the animal and the environmental impact of animal production. Urea and uric acid are the main nitrogen excretion products resulting from amino acid catabolism in mammals and birds, respectively. Nitrogen excretion can be reduced by using low-protein diets supplemented with free amino acids to ensure that essential amino acids are not limiting performance. However, there are questions whether the capacity to synthesize certain nonessential amino acids is sufficient when low-protein diets are used. This includes glycine, which is used for uric acid synthesis. Nitrogen excretion not only implies a nitrogen and energy loss in the urine, but energy is also required to synthesize the excretion products. The objective of this study was to quantify the energy and metabolic requirements for nitrogen excretion products in the urine. The stoichiometry of reactions to synthesize urea, uric acid, allantoin, and creatinine was established using information from a publicly available database. The energy cost was at least 40.3, 60.7, 64.7, and 65.4 kJ/g excreted N for urea, uric acid, allantoin, and creatinine, respectively, of which 56, 56, 47, and 85% were retained in the excretion product. Data from a broiler study were used to carry out a flux balance analysis for nitrogen, serine, glycine, and so-called 1-carbon units. The flux balance indicated that the glycine intake was insufficient to cover the requirements for growth and uric acid excretion. The serine intake was also insufficient to cover the glycine deficiency, underlining the importance of the de novo synthesis of serine and glycine. One-carbon units are also a component of uric acid and can be synthesized from serine and glycine. There are indications that the de novo synthesis of 1-carbon units may be a “weak link” in metabolism, because of the stoichiometric dependency between the synthesized 1-carbon units and glycine. The capacity to catabolize excess 1-carbon units may be limited, especially in birds fed low-protein diets. Therefore, there may be an upper limit to the 1-carbon-to-glycine requirement ratio in relation to nutrients that supply 1-carbon units and glycine. The ratio can be reduced by increasing uric acid excretion (i.e., reducing protein deposition) or by dietary supplementation with glycine. The hypothesis that the 1-carbon-to-glycine requirement ratio should be lower than the supply ratio provides a plausible explanation for the growth reduction in low-protein diets and the positive response to the dietary glycine supply.  相似文献   

4.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

5.
The diets of frugivorous and nectarivorous vertebrates contain much water and generally have high energy but low protein contents. Therefore, we tested the prediction that to save energy under conditions of high energy demands and high water intake, frugivorous Egyptian fruit bats (Rousettus aegyptiacus) will increase both the absolute quantity and the proportion of ammonia in their urine. We also examined whether such changes occur when protein intake is low and water intake is high. We did three feeding trials. In trials 1 and 2, bats were fed one of four liquid diets containing constant soy protein concentrations but varying in sucrose concentration and were kept at ambient temperatures (T(a)) of 30 degrees Celsius and 12 degrees Celsius, respectively. In trial 3, bats were kept at Ta=12 degrees Celsius and fed one of four liquid diets with equal sucrose concentrations but varying protein concentrations. In trial 1, food intake at a sucrose concentration of 256 mmol/kg H(2)O was initially high but decreased to a constant rate with further increases in sucrose concentration, while in trial 2, food intake decreased exponentially with increasing sucrose concentration. As predicted, at 12 degrees Celsius with varying sucrose concentration, both the absolute quantity and the fraction of ammonia in the bats' urine increased significantly with food intake (P<0.02), while the absolute quantity of urea and the fraction of urea nitrogen excreted decreased significantly with food intake (P<0.03). Varying sucrose concentration had no significant effect on nitrogen excretion at Ta=30 degrees Celsius. Varying protein concentration had no significant effect on nitrogen excretion at Ta=12 degrees Celsius. We suggest that Egyptian fruit bats can increase ammonia excretion in response to increased energetic demands, and we calculate that they can save energy equal to approximately 2% of their daily metabolic rate by doing so.  相似文献   

6.
Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.  相似文献   

7.
All Dalmatian dogs have an inherited defect in purine metabolism leading to high levels of uric acid excretion in their urine (hyperuricosuria) rather than allantoin, the normal end product of purine metabolism in all other breeds of dog. Transplantation experiments have demonstrated that the defect is intrinsic to the liver and not the kidney. Uricase, the enzyme involved in the breakdown of urate into allantoin, has been shown to function in Dalmatian liver cells. Therefore, candidate genes for this defect include transporters of urate, a salt of uric acid, across cell membranes. We excluded one such urate transporter candidate, galectin 9, using a Dalmatian x Pointer backcross in which hyperuricosuria was segregating.  相似文献   

8.
Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), either separately or simultaneously (ARUO) was silenced by RNAi. The amounts of several nitrogen compounds were quantified in excreta using mass spectrometry. Injection of mosquitoes with either dsRNA-AR or dsRNA-UO significantly decreased the expressions of AR or UO in the fat body (FB) and Malpighian tubules (MT). Surprisingly, the expression level of AR was increased when UO was silenced and vice versa, suggesting a cross-talk regulation between pathways. In agreement with these data, the amount of urea measured 48 h after blood feeding remained unchanged in those mosquitoes injected with dsRNA-AR or dsRNA-UO. However, allantoin significantly increased in the excreta of dsRNA-AR-injected females. The knockdown of ARUO mainly led to a decrease in urea and allantoin excretion, and an increase in arginine excretion. In addition, dsRNA-AR-injected mosquitoes treated with a specific nitric oxide synthase inhibitor showed an increase of UO expression in FB and MT and a significant increase in the excretion of nitrogen compounds. Interestingly, both a temporary delay in the digestion of a blood meal and a significant reduction in the expression of several genes involved in ammonia metabolism were observed in dsRNA-AR, UO or ARUO-injected females. These results reveal that urea synthesis and excretion in A. aegypti are tightly regulated by a unique cross-talk signaling mechanism. This process allows blood-fed mosquitoes to regulate the synthesis and/or excretion of nitrogen waste products, and avoid toxic effects that could result from a lethal concentration of ammonia in their tissues.  相似文献   

9.
The ability of some ant species (including Camponotus spp.) to forage on vertebrate urine to extract urea may extend their niche in competitive and strongly nitrogen‐limited environments. We examined the preference of Camponotus terebrans, a sand‐dwelling ant widespread in southern Australia, for baits including urine, and the duration of their foraging on those baits. We baited ants with liquid stains of urine (human and kangaroo), urea in water (2.5%. 3.5%, 7.0%, 10.0%) and sucrose in water (20% and 40%) poured directly on the ground, as well as hard baits in plots drawn on sandy soil (Kangaroo Island, South Australia). We counted individuals of this mostly nocturnal species to determine their attraction to different baits for one month. We checked plant growth on the plots after nine and 13 months. Ants collected insects and meat; they foraged for at least 29 days on stains. Ants were most numerous on 10% urea, followed by 7% urea, 3.5% urea, urine (which contains ~2.5% urea) and 2.5% urea, 40% sucrose and 20% sucrose; sucrose was less attractive to them than equimolar urea bait. Ants were attracted to human, kangaroo, and unidentified urines, and they collected bird guano. Baits and ant foraging did not affect plant recruitment in plots. We observed incidentally Camponotus consobrinus foraging on urine, which may be a common resource for this genus at the site. The remarkable ability of C. terebrans to extract nitrogen from dry sand over weeks explains partly its success on sandy soils. Foraging on urine may be an important strategy to address nitrogen limitation on sandy soils and exploit commensally niches in which hosts are kangaroos, wallabies and other vertebrates. The understanding of plant–vertebrate interactions must factor in the role of ants as commensal organisms. Such ants could also reduce greenhouse gas emissions from urine.  相似文献   

10.
11.
ABSTRACT

Although uricase-knockout (Uox KO) mice are reported to develop uric acid (UA) nephropathy, those that mature without severe nephropathy could be useful for research into purine metabolism in humans. In this study, we measured the urinary excretion of creatinine, UA, allantoin, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) collected from Uox KO mice housed in metabolic cages. UA and allantoin were determined using liquid chromatography–mass spectrometry and creatinine and 8-OHdG were measured with a commercial kit. Uox KO mice excreted significantly higher levels of UA than wild-type mice (C57BL/6), while the excretion of allantoin was significantly lower. Urinary allantoin was detected in Uox KO mice despite a lack of uricase, which is the same as in humans. In contrast to the elevated levels of UA, the daily excretion of 8-OHdG, an oxidative stress marker, was lower in Uox KO mice. UA is thought to act as an anti-oxidizing agent in humans; thus, these results show that Uox KO mice are potential animal models for research into human purine metabolism.  相似文献   

12.
Saccharomyces cerevisiae can utilize allantoin as a sole nitrogen source by degrading it in five steps to ammonia, “CO2”, and glyoxylate. We have previously shown that allophanic acid is the inducer of the urea carboxylase: allophanate hydrolase multienzyme complex. Since these enzymes catalyse the last two steps of allantoin degradation, experiments were performed to determine if allophanate was also the inducer of any other enzymes in the pathway. Our data demonstrate that allophanate induces synthesis of at least five of the seven purine degradative enzymes.  相似文献   

13.
Suspension cultured Nicotiana tabacum (tobacco) cells grow slowly on intermediates of the purine degradation pathway (hypoxanthine, xanthine, uric acid, allantoin, and urea) as their sole nitrogen source indicating that this degradation pathway is operative in these cells. The hypoxanthine analog, allopurinol inhibited tobacco cell growth on hypoxanthine but not uric acid. This helps confirm that the site of action of allopurinol is the conversion of hypoxanthine to uric acid by xanthine oxidase. Attempts to select cells which could grow in the presence of allopurinol with hypoxanthine as the nitrogen source were not successful.  相似文献   

14.
We determined the effect of water and nitrogen intake on nitrogenous waste composition in the nectarivorous Pallas's long-tongued bat Glossophaga soricina (Phyllostomidae) to test the hypothesis that bats reduce excretion of urea nitrogen and increase the excretion of ammonia nitrogen as nitrogen intake decreases and water intake decreases. Because changes in urine nitrogen composition are expected only in animals whose natural diets are low in nitrogen and high in water content, we also measured maintenance nitrogen requirements (MNR). We hypothesized that, similar to other plant-eating vertebrates, nectarivorous bats have low MNR. Our nitrogen excretion hypothesis was partly proved correct. There was an increase in the proportion of N excreted as ammonia and a decrease in the proportion excreted as urea in low-nitrogen diets. The proportion of N excreted as ammonia and urea was independent of water intake. Most individuals were ureotelic (n = 28), and only a few were ureo-ammonotelic (n = 3) or ammonotelic (n = 2). According to our nitrogen requirement hypothesis, apparent MNR (60 mg kg(-0.75) d(-1)) and truly digestible MNR (54 mg N kg(-0.75) d(-1)) were low. A decrease in urea excretion in low-nitrogen diets may result from urea recycling from liver to the gut functioning as a nitrogen salvage system in nectarivorous bats. This mechanism probably contributes to the low MNR found in Pallas's long-tongued bats.  相似文献   

15.
1. In eight Dalmatian dogs low and high purine intakes resulted in plasma urate levels from 25 to 185 mumol/l. 2. The relationship between purine intake and excretion of uric acid and allantoin per day was described by linear regression equations. 3. The elimination of endogenous purines was 1.8 mmol/day for urate and 1.7 mmol/day for allantoin. Exogenous purines increased renal excretion by 0.57 mmol/mmol. 4. Kinetic measurements with [2(-14)C]uric acid infused continuously into each of two dogs on low and high purine revealed increases of plasma pool (urate + allantoin) of 3.3 fold and entry rate of 4.0 fold. Conversion of urate into allantoin increased from 20 to 36%. 5. Renal elimination of catabolites increased 3.3 fold and exhalation rate of purine-CO2 379 fold. Extra-renal elimination at high purine intake was quantitatively similar to humans and closely related to pool size.  相似文献   

16.
Five mutants were isolated at the all2 gene on the basis of their inability to utilize hypoxanthine as a sole source of nitrogen. These mutants failed to utilize the purines adenine, hypoxanthine, xanthine, uric acid, allantoin and allantoic acid, although they could utilize urea and ammonium. The all2 mutants appeared to be defective in purine induction of uricase, allantoinase, allantoicase and ureidoglycollase activities but retained wild-type activity of the constitutively synthesized urease. The all2 mutations were recessive.  相似文献   

17.
An HPLC procedure developed for the rapid and simultaneous determination of purine derivatives (PD) in ruminants' urine was investigated, since the adoption of a single method for the simultaneous detection of PD and creatinine was not carried out due to elution of polar co-extractives and also due to overlapping of the peaks of allantoin and creatinine. The experimental conditions chosen in the present study avoid the presence of chemically competitive compounds and afford a good separation of the peaks of allantoin and creatinine. The recoveries of the standard compounds added to urine samples were 94-104%. This method can be proposed as a possible reference method for the estimation of allantoin, uric acid and creatinine in cattle urine.  相似文献   

18.
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.  相似文献   

19.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

20.
Degradation and utilization of exogenous allantoin by intact soybean root   总被引:1,自引:0,他引:1  
Allantoin is produced by soybean [ Glycine max (L.) Merr. cv. Harper] nodules during nitrogen fixation. Decomposed nodules, therefore, may release allantoin into the surrounding soil. If the released allantoin were to be taken up by the plant without degradation, it is possible that the exogenous allantoin might repress subsequent nodulation. Using a hydroponic growth system, degradation of exogenous allantoin by soybean root was studied. In the presence of intact soybean root exogenous allantoin was rapidly degraded, yielding ca 2 mmol of urea per mmol of allantoin. Hydrolysis of urea to ammonia proceeded very slowly. Instead, the urea seemed to be taken up by the intact soybean root. The enzyme(s) required for the production of urea from exogenous allantoin could not be detected in the aqueous rooting medium. Therefore, these enzymes seem to be attached to the exterior surface of the intact soybean root. This study shows that exogenous allantoin can be readily degraded and assimilated by the growing soybean plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号