首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Excised 20-d-old sunflower roots (Helianthus annuus L. cv. Sun-Gro 380) with different Ca2+ status were used to study the effects of root Ca2+ status and abscisic acid (ABA) on the exudation rate (Jv), the hydraulic conductivity of the root (Lpr), the flux of exuded Ca2+ (JCa, and the gradient of osmotic pressure between the xylem and the external medium. Jv and Lpr increased in direct proportion to the Ca2+ status of the root. Addition of ABA (4 M) at the onset of exudation in the external medium made Jv and Lpr rise, and this effect also increased with the Ca2+ status. The effects of HgCl2 and its interaction with ABA on water transport in the root were also studied. Addition of HgCl2 (1 M) 2 h after the onset of exudation in the external medium quickly inhibited Jv, independently of the presence of ABA in the root medium. The results recorded here point to the involvement of ABA and Ca2+ in the regulation of root water flow, as well as the existence of aquaporins in the cell membranes of sunflower roots.  相似文献   

2.
Changes in water flux (Jv) across detopped, 7-d-old, maize rootswere characterized during the initial 24 h of being made anoxicby exposure to an anaerobic nutrient solution. Suction (50 kPa)was applied to the xylem and samples of the xylem sap were collectedat intervals and the osmolality and ionic content were measured. Values of Jv through anoxic roots fell below those of aerobiccontrols 1 h after the equilibrium oxygen partial pressure inthe bathing medium dropped below 20 kPa (air = 20.6 kPa). Thereduction in Jv was due primarily to a nullification of thediurnal rhythm in hydraulic conductivity (Lp) that was measuredin aerobic roots. However, about one-quarter of the reductionin Jv could be accounted for by a smaller osmotic componentof the driving force () on water movement. The significance of changes in Jv in anoxic roots is discussedin terms of the reliability of estimates of Lp, the reflectioncoefficient () and . Key words: Anaerobiosis, hydraulic conductivity, osmotic potential, water  相似文献   

3.
The effects of oxygen deficiency on suction-induced water flux(Jv) through detached roots of hydroponically-grown sunflowerwere investigated over a period of up to 6 d. Jv was reducedby the time the oxygen partial pressure in the solution, spargedwith oxygen-free N2, had fallen below 2 kPa (air – 20.6kPa). This reduction resulted from a decline in the hydraulicconductivity of the radial pathway for water movement (Lp),although up to 46% of the decline was attributable to changesin the osmotic component of the driving force (). Lp (mm s–1MPa–1), for aerobic roots was 2.23 ? 10–5 and foranaerobic roots during the initial 16 h, 1.21 ? 10–5. At 22 h after the onset of anaerobic treatments, Jv and Lp increased,with Lp values becoming 3 times greater than those measuredbetween 4 h and 16 h of treatment and 1.4 times greater thanin aerated roots. However, Lp increased a further 15-fold whenroots were killed by immersion in boiling water for 2 min. Duringand up to 6 d of anaerobic treatment, some roots retained Lpvalues similar to those at 22 h, while others displayed characteristicstypical of dead roots. At no time was there any indication ofreduced axial conductivity due to xylem vessel blockage. The results are discussed in terms of possible energy sourcesfor the maintenance of root integrity and their importance toplant survival during long periods of severe oxygen shortage. Key words: Anaerobiosis, oxygen deficiency, hydraulic conductivity, osmotic potential, water  相似文献   

4.
Root system hydraulic conductivity in species with contrasting root anatomy   总被引:17,自引:2,他引:15  
Previous research suggested that the hydraulic properties of root systems of intact plants could be described by two parameters: the hydraulic conductivity (Lpr) or the slope of the flow-density/water potential gradient relationship, and the offset or minimum water potential gradient required to induce flow. In this study Lpr and offset were correlated with anatomical features of the root radial path in plants with contrasting root anatomy. Two woody and three herbaceous species were examined which exhibit a range of root anatomical features: Asparagus densiflorus (Kunth) Jessop (asparagus), Dendrobium superbum Rchb. f. (dendrobium), Glycine max (L.) Merr. (soybean), Prunus persica (L.) Batsch. (peach), Citrus aurantium L. (sour orange). Lpr varied about 8-fold, and the offset varied about 6-fold among the five species. Lpr was inversely related to root diameter (r20.39) and cortex width (r20.55), suggesting that species with thinner roots or roots with a thin cortex had the highest Lpr. Further observations suggested that the cortex width was a stronger determinant of Lpr than root diameter. However, the offset was not correlated with root diameter, stele diameter or cortex width, but was >2-fold higher in species having an exodermis in the root radial path (sour orange, asparagus, and dendrobium) compared to those lacking an exodermis (peach and soybean). The data on root Lr obtained were similar to those given in the literature for both intact plants and excised roots which have been measured with different techniques. It is concluded that Lpr and offset, which describe the flow-water potential relationship for intact root systems, are related to differences in the root cortex; specifically, its thickness and the presence/absence of a suberized exodermis. Hence, these anatomical differences may, in part, cause the variability in root hydralic properties that exists among plant species.  相似文献   

5.
The possibility that an enhanced supply of dissolved inorganic carbon (DIC=CO2+HCO3-) to the root solution could increase the growth of Lycopersicon esculentum (L.) Mill. cv. F144 was investigated under both saline and non-saline root medium conditions. Tomato seedlings were grown in hydroponic culture with and without NaCl and the root solution was aerated with CO2 concentrations in the range between 0 and 5000 mol mol-1. The biomass of both control and salinity-stressed plants grown at high temperatures (daily maximum of 37C) and an irradiance of 1500 mol m-2 s-1 was increased by up to 200% by enriched rhizosphere DIC. The growth rates of plants grown with irradiances of less than 100 mol m-2 s-1 were increased by elevated rhizosphere DIC concentrations only when grown at high shoot temperatures (35C) or with salinity 28°C). At high light intensities, the photosynthetic rate, the CO2 and light-saturated photosynthetic rate (jmax) and the stomatal conductance of plants grown at high light intensity were lower in plants supplied with enriched compared to ambient DIC. This was interpreted as 'down-regulation' of the photosynthetic system in plants supplied with elevated DIC. Labelled organic carbon in the xylem sap derived from root DI14C incorporation was found to be sufficient to deliver carbon to the shoot at rates equivalent to 1% and 10% of the photosynthetic rate of the plants supplied with ambient- and enriched-DIC, respectively. It was concluded that organic carbon derived from DIC incorporation and translocated in the xylem from the root to the shoot may provide a source of carbon for the shoots, especially under conditions where low stomatal conductance may be advantageous, such as salinity stress, high shoot temperatures and high light intensities.  相似文献   

6.
Bunce  J 《Journal of experimental botany》1998,49(326):1555-1561
The temperature dependencies of the solubility of carbon dioxide and oxygen in water and the temperature dependency of the kinetic characteristics of the ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme result in the short-term stimulation of photosynthesis with a doubling of carbon dioxide from 350 to 700 mol mol-1 usually decreasing from about 90% at 30C to about 25% at 10C at high photon flux. In field-grown wheat and barley, the expected values at 30°C were observed, but also values as high as 60% at 10°C. The much larger than expected stimulation at cool temperatures in these species also occurred in plants grown at 15°C, but not at 23°C in controlled environment chambers. Gas exchange analysis indicated that an unusually high diffusive limitation was not an explanation for the large response. Assessment of the apparent in vivo specificity of Rubisco by determining the carbon dioxide concentration at which carboxylation equalled carbon dioxide release from oxygenation, indicated that growth at low temperatures altered the apparent enzyme specificity in these species compared to these species grown at the warmer temperature. Inserting the observed specificities into a biochemical model of photosynthesis indicated that altered Rubisco specificity was consistent with the observed rates of assimilation. Whether altered apparent Rubisco specificity is caused by altered stoichiometry of photorespiration or an actual change in enzyme specificity, the results indicate that the temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide may vary greatly with species and with prior exposure to low temperature.Keywords: Barley, carbon dioxide, photosynthesis, temperature, wheat.   相似文献   

7.
Tolerance to low temperature and paraquat-mediated oxidative stress was investigated in two Zea mays genotypes, VA36 and A619, grown at 25/22 C and 16/14 C for 50 d after germination. VA36, the tolerant genotype, showed an enhanced resistance to paraquat as compared to A619, the sensitive genotype, when grown at low temperature. In VA36, superoxide dismutase and ascorbate peroxidase activities increased during growth at both 25/22 °C or 16/14 °C. In A619, superoxide dismutase activity was similar in plants grown at both 16/14 °C or 25/22 °C. Ascorbate peroxidase activity was always significantly lower in plants grown at low temperature than in plants grown at 25/22 °C. The total ascorbate peroxidase activity was correlated with the cytosolic ascorbate peroxidase protein content in all but A619 plants grown at low temperature for 25 d. The isozyme pattern of SOD showed a higher abundance of MnSOD in VA36 than in A619 and of FeSOD in A619 compared to VA36. Growth at low temperature enhanced resistance to paraquat infiltration more in VA36 than in A619. SOD and APX activities were generally higher and more stable with the increase of paraquat concentration in VA36 than in A619. Damage indicated by Fv/Fm and ion leakage after paraquat infiltration were generally higher in plants grown at 25/22 °C than at 16/14 °C and higher in A619 than in VA36. However, no causal link is proved between the extent of damage and the increase of SOD and APX activities alone. It is suggested that tolerance to oxidative stress requires an integrated enhancement of the antioxidant system.  相似文献   

8.
Hydraulic and osmotic properties of oak roots   总被引:3,自引:1,他引:2  
Hydraulic and osmotic properties of root systems of 2.5–8-months-oldoak seedlings (Quercus robur and Q. petraea) were measured usingthe root pressure probe. Root pressures of excised roots rangedbetween 0.05 and 0.15 MPa which was similar to values obtainedfor herbaceous species. Root hydraulic conductivity (Lpr; perunit of root surface area) was much larger in the presence ofhydrostatic than in the presence of osmotic pressure differencesdriving water flow across the roots. Differences were as largeas a factor of 20 to 470. Roots of the young seedlings of Q.robur grew more rapidly than those of Q. petraea and had a hydraulicconductivity which was substantially higher. Nitrogen nutritionaffected root growth of Q. robur more than that of Q. petraea,but did not affect root Lpr of either species. For Q. robur,Lpr decreased with root age (size) which is interpreted by aneffect of suberization during the development of fine roots.Root hydraulic conductance remained constant for both species.For Q. robur, this was due to the fact that the overall decreasein Lpr was compensated for by an increase in root surface area.Root reflection coefficients (sr) were low and ranged betweensr=0.1 and 0.5 for solutes for which cell membranes exhibitreflection coefficients of virtually unity (salts, sugars etc.).Solute permeability was small and was usually not measurablewith the technique. When root systems were attached to the rootpressure probe for longer periods of time (up to 10d), solutepermeability increased due to ageing effects which, however,did not cause a general leakiness of the roots as Lpr decreased.Hence, values were only used from measurements taken duringthe first day. Transport properties of oak roots are comparedwith those recently obtained for spruce (Rdinger et al., 1994).They are discussed in terms of a composite transport model ofthe root which explains low root sr at low solute permeabilityand reasonable rootLpr The model predicts differences betweenosmotic and hydraulic water flow and differences in the transportproperties of roots of herbs and trees as found. Key words: Composite transport, hydraulic conductivity, nitrogen nutrition, Quercus, reflection coefficient, root transport, water relations  相似文献   

9.
Even moderate chilling temperatures may cause important modifications in assimilate movement in maize seedlings from the shoot to the roots, but there is no information on long-distance transport of assimilates in plants subjected to vertical gradients of moderately low temperatures in the root zone. Seedlings of a chilling-tolerant (KW1074) and a chilling-sensitive inbred line (CM109) of maize were grown in a system that allowed the maintenance of temperature gradients between the topsoil (0-10 cm) and the subsoil (10-50 cm). After pregrowth at 24C until the third-leaf stage, plants were subjected to chilling-stress regimes for 6 d (17/17/17C, 17/17/12°C, 12/12/12°C, 12/12/17°C, air/topsoil/subsoil). The time taken for the assimilates to enter the phloem from the second leaf increased at low temperatures for both lines, but to a much greater extent in CM109. Although mainly influenced by air and topsoil temperature, low temperature in the subsoil also affected this trait in CM109. The speed of assimilate transport between the second leaf and the mesocotyl in KW1074 was strongly reduced by cool temperatures in the shoot and topsoil as well as by 12°C in the subsoil in CM109, because the latter line had a larger portion of its root system in the subsoil as compared to KW1074. The portion of assimilates allocated to the root decreased at low temperatures in both lines, but to a greater extent in CM109, and was controlled mostly by the subsoil temperature. After rewarming, values of all measured parameters of assimilate transport returned to near pregrowth levels within a few days.Keywords: Assimilate transport, low temperature stress, root growth, vertical soil temperature gradients, Zea mays L.   相似文献   

10.
11.
The effect of nitrogen supply to chicory plants on carbon partitioningbetween shoot, root and tuberized root was studied at differentstages of vegetative growth, using long-term 13CO2 labelling-chaseexperiments. This approach was complemented by measurement ofstorage carbohydrates and activities of enzymes involved inroot sucrose metabolism (sucrose-sucrose fructosyl transferase(SST), sucrose synthase, invertase). In both young and matureplants, low resulted in a 30–35% decrease in 13C assimilation. However, the partitioningof 13C between shoot and root was affected differently at differentstages of development. In young plants, in which carbohydrateswere being used for structural root and shoot growth, neither13C shoot/13C root ratio nor root activities of the above enzymeswere modified by supply. In contrast, in mature plants storing large amounts of carbohydratesas fructan in the tuberized root, low caused the ratio to decrease from 0.6 to 0.2, despiteunchanged net flux of 13C from shoot to root. The extractableactivity of SST was elevated in mature plants, compared to youngplants, at both low and high , consistent with its role in fructan synthesis. However, matureplants grown at low exhibited SST activity double that of plants grown at high . From these results, it is concluded that the observeddecrease in shoot/root dry weight ratio at low supply is caused by increased utilization of carbohydratesfor storage due to elevated root SST activity. Key words: Chicory, nitrate, 13C, shoot/root ratio, fructans, SST  相似文献   

12.
A controlled environment chamber for whole plants is described in which vapour pressure deficit (VPD) and temperature can be controlled independently. Plant responses to changes in VPD at constant temperature were measured in terms of leaf extension and plant transpiration rates. Manipulation of VPD independently of temperature was shown to be capable of altering the leaf extension rates of the C4 grass Miscanthus x giganteus grown in hydroponics. The effects of VPD on leaf extension are attributed to changes in transpiration rate and hence leaf water status. It was found that, at a temperature of 20C, the influence of a fixed change in VPD was proportionally less than those observed at temperatures which are close to the threshold for growth (between 6 and 10C). These responses are discussed in relation to our current understanding of the mechanisms of cell growth. The fact that the VPD effects on leaf expansion rates were largely transient suggest that simple models driven by temperature alone are adequate to predict leaf expansion within the temperature range 6-20°C, for this genotype of Miscanthus, in the field.Key words: Leaf growth, Miscanthus x giganteus, temperature, vapour pressure deficit, C4 plants.   相似文献   

13.
The changes in photosynthetic activity and composition of pigments induced by changes in temperature were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of maize (Zea mays L.). The plants were grown under a controlled environment at a photon flux density of 550 mol m-2 s-1, a 12 h photoperiod and at a suboptimal temperature of 14/12 C (day/night) until the full expansion of the third leaf. After this treatment, the chilling-tolerant genotypes, when compared with the sensitive ones, displayed a higher photosynthetic activity, a higher content of chlorophyll (Chl) a+b, a higher Chl a/b ratio, a larger total carotenoid pool size as well as a different carotenoid composition. When temperature was subsequently increased to 24/22 C for 3 d the composition of the pigments changed, but the chilling-sensitive genotypes, while adjusting their lower Chl a/b ratio and their different carotenoid composition, were unable to adjust their lower content of chlorophyll, their smaller total carotenoid pool size or their lower photosynthetic performance. Moreover, while the chilling-tolerant genotypes converted the most part of zeaxanthin to violaxanthin in the xanthophyll cycle, the chilling-sensitive genotypes retained high amounts of zeaxanthin. The changes in pigment composition that occurred over the 3 d at 24/22 °C were largely conserved when the plants were returned to 14/12 °C, but photosynthetic activity decreased and zeaxanthin accumulated again. The results suggest that the capability of the chilling-tolerant genotypes, when compared with the sensitive ones, to retain high amounts of pigments and to form a competent photosynthetic apparatus at low temperature is the basis for their more vigorous growth in cool climates.  相似文献   

14.
Controlled hydration of seeds followed by drying (seed priming) is used to break dormancy, speed germination, and improve uniformity of radicle emergence. To date, empirical trials are used to predict optimal priming conditions for a given seed lot. Since priming is based upon seed water relations, it was hypothesized that the sensitivity of germination to reduced water potential before priming might be mechanistically related to, and therefore predictive of, priming responsiveness. Analyses of germination of 13 tomato (Lycopersicon esculentum Mill.) seed lots at two temperatures (15C and 20C) and three water potentials (0, -0.28 and -0.43 MPa) showed that seed lot germination responses could be quantitatively characterized by parameters derived from thermal time, hydrotime, and hydrothermal time models (R20.73-0.99). Six of the seed lots were primed at two temperatures (15°C and 20°C) and three water potentials (-1.0, -1.5 and -2.0 MPa) for various durations, dried, and their subsequent germination rates analysed according to hydropriming time and hydrothermal priming time models. The responses of germination rates to priming were characterized by hydropriming time (HP) and hydrothermal priming time (HTP) constants and the minimum water potential (min) and temperature (Tmin) for achieving a priming effect. The values of min and Tmin varied relatively little among tomato seed lots, and the generalized values of min=2.39 MPa and Tmin=9.10°C accounted for 74% (15°C), 57% (20°C), and 62% (across both temperatures) of the increase in germination rates following priming. Nonetheless, while the hydrothermal time models described germination patterns both before and after priming, there was relatively little predictive relationship between them.  相似文献   

15.
The possibility of using quenching analysis of chlorophyll a fluorescence as a selection tool for improving the cold tolerance of maize was investigated in six genotypes differing greatly in the ability to develop a competent photosynthetic apparatus at low temperature. Upon gradual cooling measurements of the quantum yield of electron transport (PSII) indicated that leaves of tolerant genotypes, that developed at suboptimal temperature (15C), maintained higher rates of electron transport than leaves of sensitive genotypes. This difference was largely due to the ability of the tolerant plants to keep higher efficiency of excitation energy capture by open photosystem II reaction centres (F'v/F'm). The absence of genotypic differences in leaves that developed at optimal temperature indicates that the trait is not expressed constitutively, but relies on adaptation mechanisms. Furthermore, the genotypic difference was not expressed under increasing illumination at 15C and 25°C suggesting that the trait is also low-temperature-specific and is not expressed solely in response to increasing excess light energy. Applying the method to flint and dent breeding population led to a substantial increase (up to 31%) in the photosynthetic capacity of hybrids between selected F3 inbreeding families grown at suboptimal temperature, demonstrating that the method is an efficient selection tool for improving the cold tolerance of maize through breeding.  相似文献   

16.
Established, nodulated white clover plants (Trifolium repensL. cv. Blanca) were transferred to eight plant culture unitsof a system of flowing solution culture. Solution temperatureswere 5, 11, 17, and 25 ?C (two units per temperature), withshoot temperature of 25/15 ?C day/night and light regime commonto all plants. After 7 d, was supplied at 10 mmol m–3 to one of each pair of culture units and thenet uptake of was monitored over 14 d. The remaining four culture units served as controls in which plantswere entirely dependent on N2 fixation, as estimated by sequentialharvesting and the change in the amount of N in plants. Totalfresh and dry weights increased exponentially with time andwith increasing root temperature, between 5–25 ?C in nitrateplants and 5–17 ?C in control plants, respectively, byfactors of 2.9 and 1.8. Nodule dry weight of nitrate plantsshowed little increase after 6 d compared with control plants.Dry weight shoot: root ratios increased with time in all treatmentsexcept 5 ?C control plants. Total net uptake of over 13 d was 0.41, 4.27, 11.92, and 12.77 mmol plant-1, respectively,at 5, 11, 17, and 25 ?C. At all temperatures except 5 ?C, plantsaccumulated high concentrations of (10–40 mol m–3) in leaflets and roots, within 2 or 3 days ofsupplying . Daily mean unit absorption rates of increased 12-fold with increasing temperature between 5 and 25 ?C, and showed little change with time at 5,17, and 25 ?C. The total N2 fixed by nitrate plants over 14d increased 5-fold with temperature between 5 and 17 ?C, butwas always less than the amount fixed by control plants. Thepercentage contributed by N2 fixation to total N acquisitionby nitrate plants over 14 d decreased with increasing temperature,from 77% at 5 ?C to 11 % at 25 ?C. Mean daily rates of N2 fixationper unit dry weight of nodule were lower in nitrate plants thanin control plants throughout treatment at 5 ?C and 25 ?C, butat 11 ?C and 17 ?C the rates for nitrate plants increased progressivelywith time and exceeded the rates for control plants after 8d. In both nitrate and control plants the effect of temperatureon N2 fixation per nodule dry weight was proportionately lessthan that on unit absorption rate of . The results are discussed in terms of the overall regulation ofN accumulation by white clover and the adaptive significanceof differences in the sensitivities of uptake and N2 fixation to root temperature. Key words: Trifolium repens, white clover, root temperature, N2 fixation, nitrate uptake  相似文献   

17.
The protogynous inflorescences of eastern skunk cabbage, Symplocarpus foetidus, are thermogenic and regulate spadix temperature (Ts) well above ambient temperature (Ta). Continuous records of oxygen consumption, carbon dioxide production, and temperatures of plants were made at a field site in Canada. At Ta between 3-24C, Ts ranged between 16-26C, and the warmest inflorescences were those in the receptive female or early pollen-bearing stages. Respiratory rates of the 2-g spadices increased with declining Ta, and reached a maximum of 0.54 mol O2s-1 (0.73 ml min-1), equivalent to 0.26 W of heat production. At Ta below 3°C, several inflorescences failed to maintain high Ts and abruptly switched Ts to near freezing. Some froze when Ta dropped to about -10°C. Those that did not freeze could quickly switch to the warm state if Ta rose above about 3°C. Switching was related to the balance between heat production and heat loss that tended to produce stable equilibria at either high or low Ts. Switching between warm and cool states resulted in a bimodal distribution of Ts in the field. A respiratory quotient of 1.0 showed that carbohydrate was the substrate for thermogenesis, and bomb calorimetry of florets confirmed that energy was imported from the root. Only 11 invertebrates, including only one flying insect, were found in 195 inflorescences, suggesting that heat production and temperature regulation are not closely associated with cross-pollination.  相似文献   

18.
The possible interaction of two stresses, UV-B radiation and cadmium, applied simultaneously, was investigated in Brassica napus L. cv. Paroll with respect of chlorophyll fluorescence, growth and uptake of selected elements. Plants were grown in nutrient solution containing CdCl2, (0, 0.5, 2 or 5 M) and irradiated with photosynthetically active radiation (PAR, 400-700 nm, 800 mol m-2 s-1) with or without supplemental ultraviolet-B radiation (UV-B, 280-320 nm, 15 kJ m-2 d-1, weighted irradiance). After 14 d of treatment, the most pronounced effects were found at 2 and 5 M CdCl2 with and without supplemental UV-B radiation. Exposure to cadmium significantly increased the amount of Cd in both roots and shoots. In addition, increases occurred in the concentrations of Fe, Zn, Cu, and P in roots, while K was reduced. In shoots the S content rose significantly both in the presence and absence of UV-B radiation, while significant increases in Mg, Ca, P, Cu, and K occurred only in plants exposed to Cd and UV-B radiation. Manganese decreased significantly under the combined exposure treatment. The rise in S content may have been due to stimulated glutathione and phytochelatin synthesis. Cadmium exposure significantly decreased root dry weight, leaf area, total chlorophyll content, carotenoid content, and the photochemical quantum yield of photosynthesis. As an estimation of energy dissipation processes in photosynthesis, non-photochemical quenching (qNPQ) was measured using a pulse amplitude modulated fluorometer. The qNPQ increased with increasing Cd, while the combination of cadmium and UV-B reduced the qNPQ compared to that in plants exposed only to cadmium or UV-B radiation. The chlorophyll a:b ratio showed a reduction with UV-B at no or low Cd concentrations (0 M, 0.5 M CdCl2), but not at the higher Cd concentrations used (2 M, 5 M CdCl2). Thus in some instances there appeared to be a UV-B and Cd interaction, while in other plants response could be attributed to either treatment alone.Keywords: Brassica napus, cadmium, ultraviolet-B radiation.   相似文献   

19.
Genistein is a multi-functional isoflavonoid naturally secreted from roots of hydroponically grown legume plants. Roots of hydroponically cultivated yellow lupin (Lupinus luteus L.) plants, transferred into water secreted minor amounts of genistein (about 5 g g-1 fr. wt.). Secretion of genistein from L. luteus roots (rhizosecretion) was stimulated dramatically to over 100 g g-1 root fresh weight by soluble chitosan, salicylic acid (SA) and potassium cyanide (KCN) supplied at 0.12% (w/v), 800 M and 400 M, respectively. Other identified elicitors caused a smaller induction of genistein rhizosecretion. Increased levels of genistein in root exudates corresponded to greater amounts of genistein in root tissue. Elicitor-induced rhizosecretion of genistein was based on de novo synthesis and was inhibited by glyphosate and other less specific metabolic inhibitors. Except for NaF:AICI3, all tested elicitors of genistein rhizosecretion produced a distinct bell-shaped dose-response curve. Most of the elicitor-induced rhizosecretion of genistein occurred during the first day, followed by a gradual decline. Further addition of elicitor treatments had little effect of genistein rhizosecretion, indicating that the induction of genistein rhizosecretion by the identified elicitors is a once only event.Keywords: Genistein, isoflavonoids, Lupinus luteus, elicitation, exudation.   相似文献   

20.

Background and Aims

As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake.

Methods

Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9–13, 14–18, 19–23 and 24–28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lpr). Osmotic Lp of individual seminal and adventitious roots and osmotic Lpr of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lpr of the root system was derived from analyses of transpiring plants.

Key Results

Although osmotic and hydrostatic Lp and Lpr values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lpr of entire root systems and hydrostatic Lpr of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages.

Conclusions

Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号