首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

With the increasing amount of data generated in molecular genetics laboratories, it is often difficult to make sense of results because of the vast number of different outcomes or variables studied. Examples include expression levels for large numbers of genes and haplotypes at large numbers of loci. It is then natural to group observations into smaller numbers of classes that allow for an easier overview and interpretation of the data. This grouping is often carried out in multiple steps with the aid of hierarchical cluster analysis, each step leading to a smaller number of classes by combining similar observations or classes. At each step, either implicitly or explicitly, researchers tend to interpret results and eventually focus on that set of classes providing the "best" (most significant) result. While this approach makes sense, the overall statistical significance of the experiment must include the clustering process, which modifies the grouping structure of the data and often removes variation.  相似文献   

2.

Background  

Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE) rather than recursive feature elimination (RFE). We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE.  相似文献   

3.
Supervised harvesting of expression trees   总被引:2,自引:2,他引:0       下载免费PDF全文
Hastie T  Tibshirani R  Botstein D  Brown P 《Genome biology》2001,2(1):research0003.1-research000312

Background

We propose a new method for supervised learning from gene expression data. We call it 'tree harvesting'. This technique starts with a hierarchical clustering of genes, then models the outcome variable as a sum of the average expression profiles of chosen clusters and their products. It can be applied to many different kinds of outcome measures such as censored survival times, or a response falling in two or more classes (for example, cancer classes). The method can discover genes that have strong effects on their own, and genes that interact with other genes.

Results

We illustrate the method on data from a lymphoma study, and on a dataset containing samples from eight different cancers. It identified some potentially interesting gene clusters. In simulation studies we found that the procedure may require a large number of experimental samples to successfully discover interactions.

Conclusions

Tree harvesting is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worthy of further investigation.  相似文献   

4.

Background  

It is well known that the normalization step of microarray data makes a difference in the downstream analysis. All normalization methods rely on certain assumptions, so differences in results can be traced to different sensitivities to violation of the assumptions. Illustrating the lack of robustness, in a striking spike-in experiment all existing normalization methods fail because of an imbalance between up- and down-regulated genes. This means it is still important to develop a normalization method that is robust against violation of the standard assumptions  相似文献   

5.

Background  

Several aspects of microarray data analysis are dependent on identification of genes expressed at or near the limits of detection. For example, regression-based normalization methods rely on the premise that most genes in compared samples are expressed at similar levels and therefore require accurate identification of nonexpressed genes (additive noise) so that they can be excluded from the normalization procedure. Moreover, key regulatory genes can maintain stringent control of a given response at low expression levels. If arbitrary cutoffs are used for distinguishing expressed from nonexpressed genes, some of these key regulatory genes may be unnecessarily excluded from the analysis. Unfortunately, no accurate method for differentiating additive noise from genes expressed at low levels is currently available.  相似文献   

6.

Background  

Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data.  相似文献   

7.

Background  

A routine goal in the analysis of microarray data is to identify genes with expression levels that correlate with known classes of experiments. In a growing number of array data sets, it has been shown that there is an over-abundance of genes that discriminate between known classes as compared to expectations for random classes. Therefore, one can search for novel classes in array data by looking for partitions of experiments for which there are an over-abundance of discriminatory genes. We have previously used such an approach in a breast cancer study.  相似文献   

8.

Background  

RT-qPCR analysis is a widely used method for the analysis of mRNA expression throughout the field of mesenchymal stromal cell (MSC) research. Comparison between MSC studies, both in vitro and in vivo, are challenging due to the varied methods of RT-qPCR data normalization and analysis. Therefore, this study focuses on putative housekeeping genes for the normalization of RT-qPCR data between heterogeneous commercially available human MSC, compared with more homogeneous populations of MSC such as MIAMI and RS-1 cells.  相似文献   

9.

Motivation

DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes.

Results

Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub’s leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.  相似文献   

10.

Background  

A large number of papers have been published on analysis of microarray data with particular emphasis on normalization of data, detection of differentially expressed genes, clustering of genes and regulatory network. On other hand there are only few studies on relation between expression level and composition of nucleotide/protein sequence, using expression data. There is a need to understand why particular genes/proteins express more in particular conditions. In this study, we analyze 3468 genes of Saccharomyces cerevisiae obtained from Holstege et al., (1998) to understand the relationship between expression level and amino acid composition.  相似文献   

11.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

12.

Background  

Interpretation of comprehensive DNA microarray data sets is a challenging task for biologists and process engineers where scientific assistance of statistics and bioinformatics is essential. Interdisciplinary cooperation and concerted development of software-tools for simplified and accelerated data analysis and interpretation is the key to overcome the bottleneck in data-analysis workflows. This approach is exemplified by gcExplorer an interactive visualization toolbox based on cluster analysis. Clustering is an important tool in gene expression data analysis to find groups of co-expressed genes which can finally suggest functional pathways and interactions between genes. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results.  相似文献   

13.

Background

Gene signatures are important to represent the molecular changes in the disease genomes or the cells in specific conditions, and have been often used to separate samples into different groups for better research or clinical treatment. While many methods and applications have been available in literature, there still lack powerful ones that can take account of the complex data and detect the most informative signatures.

Methods

In this article, we present a new framework for identifying gene signatures using Pareto-optimal cluster size identification for RNA-seq data. We first performed pre-filtering steps and normalization, then utilized the empirical Bayes test in Limma package to identify the differentially expressed genes (DEGs). Next, we used a multi-objective optimization technique, “Multi-objective optimization for collecting cluster alternatives” (MOCCA in R package) on these DEGs to find Pareto-optimal cluster size, and then applied k-means clustering to the RNA-seq data based on the optimal cluster size. The best cluster was obtained through computing the average Spearman’s Correlation Score among all the genes in pair-wise manner belonging to the module. The best cluster is treated as the signature for the respective disease or cellular condition.

Results

We applied our framework to a cervical cancer RNA-seq dataset, which included 253 squamous cell carcinoma (SCC) samples and 22 adenocarcinoma (ADENO) samples. We identified a total of 582 DEGs by Limma analysis of SCC versus ADENO samples. Among them, 260 are up-regulated genes and 322 are down-regulated genes. Using MOCCA, we obtained seven Pareto-optimal clusters. The best cluster has a total of 35 DEGs consisting of all-upregulated genes. For validation, we ran PAMR (prediction analysis for microarrays) classifier on the selected best cluster, and assessed the classification performance. Our evaluation, measured by sensitivity, specificity, precision, and accuracy, showed high confidence.

Conclusions

Our framework identified a multi-objective based cluster that is treated as a signature that can classify the disease and control group of samples with higher classification performance (accuracy 0.935) for the corresponding disease. Our method is useful to find signature for any RNA-seq or microarray data.
  相似文献   

14.
15.

Background  

Accuracy in quantitative real-time RT-PCR is dependent on high quality RNA, consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference genes used for normalization impact the results generated from expression studies and, hence, should be evaluated prior to use across samples and treatments. Few statistically validated reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide contents.  相似文献   

16.
17.

Background  

Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.  相似文献   

18.

Background  

Prior to cluster analysis or genetic network analysis it is customary to filter, or remove genes considered to be irrelevant from the set of genes to be analyzed. Often genes whose variation across samples is less than an arbitrary threshold value are deleted. This can improve interpretability and reduce bias.  相似文献   

19.

Background  

Many different cluster methods are frequently used in gene expression data analysis to find groups of co-expressed genes. However, cluster algorithms with the ability to visualize the resulting clusters are usually preferred. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results.  相似文献   

20.

Background  

A typical step in the analysis of gene expression data is the determination of clusters of genes that exhibit similar expression patterns. Researchers are confronted with the seemingly arbitrary choice between numerous algorithms to perform cluster analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号