首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background, aim and scope  

Fly ash, a by-product of coal-fired power stations, is substituted for Portland cement to improve the properties of concrete and reduce the embodied greenhouse gas (GHG) emissions. Much of the world’s fly ash is currently disposed of as a waste product. While replacing some Portland cement with fly ash can reduce production costs and the embodied emissions of concrete, the relationship between fly ash content and embodied GHG emissions in concrete has not been quantified. The impact of fly ash content on embodied water is also unknown. Furthermore, it is not known whether a global trade in fly ash for use in concrete is feasible from a carbon balance perspective, or if transport over long distances would eliminate any CO2 savings. This paper aims to quantify GHG emissions and water embodied in concrete (fc = 32 MPa) as a function of fly ash content and to determine the critical fly ash transportation distance, beyond which use of fly ash in concrete increases embodied GHG emissions.  相似文献   

2.
Life cycle carbon footprint of the National Geographic magazine   总被引:1,自引:0,他引:1  

Purpose  

Climate change is an urgent and serious global problem. Life cycle assessment methods may be used to evaluate the life cycle carbon footprint of a product, such as the National Geographic magazine. The results of the study provide the publisher and material suppliers with information to reduce life cycle greenhouse gas (GHG) emissions. The study also informs consumers of the GHG emissions associated with the product. The purpose of this study was to document the life cycle carbon footprint of the National Geographic magazine.  相似文献   

3.

Purpose  

As liquid crystal display (LCD) flat-screen televisions increase in popularity, their potential contribution to global warming has received wide attention. This study presents global warming impacts resulting from the life cycle assessment (LCA) of LCD flat-screen televisions for key global warming contributors from the “cradle-to-gate” and use stages of the product’s life cycle. The emissions from nitrogen trifluoride (NF3), a greenhouse gas with a global warming potential (GWP) 17,000 times more potent than carbon dioxide (CO2), are not monitored in the Kyoto Protocol. Emissions in the cradle-to-gate and use stages were modeled in this study according to their GWP (kg CO2 equivalent), focusing and analyzing the most significant source of NF3 emissions.  相似文献   

4.

Purpose  

Building is one of the main factors of energy use and greenhouse gas emissions. Reducing energy consumption and carbon dioxide (CO2) emission from building is urgent for environmental protection and sustainable development. The objective of this study is to develop a life cycle assessment (LCA) model for an office building in China to assess its energy consumption and CO2 emission, determine the whole life cycle phases, and the significant environmental aspects that contribute most to the impact.  相似文献   

5.

Background, aim and scope  

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.  相似文献   

6.
城市能源利用碳足迹分析——以厦门市为例   总被引:3,自引:0,他引:3  
林剑艺  孟凡鑫  崔胜辉  于洋  赵胜男 《生态学报》2012,32(12):3782-3794
城市能源利用碳足迹分析综合考虑直接与间接碳排放,对于深度分析碳排放的本质过程、制定科学全面的碳减排计划具有重要意义。以厦门市为研究案例,应用碳足迹的混合分析方法,对厦门市2009年能源利用碳足迹进行了分析,除了包括传统研究中的城市能源终端利用产生的直接碳排放,还计算了跨界交通和城市主要消耗物质的内含能引起的间接碳排放。研究结果表明:(1)城市边界内的工业、交通、商业等部门的能源消耗产生的直接碳排放(即层次1和层次2)只占到总碳足迹的64%,而一直被忽略的跨界交通和城市主要消耗物质的内含能引起的间接碳排放(层次3)占到36%;(2)在直接碳排放中,工业部门的碳排放贡献率最大,占到直接碳排放的55%,其中化工行业带来的碳排放占到工业部门的25%;(3)在间接碳排放中,跨界交通引起的碳排放占间接碳排放的27%,其中长途道路运输贡献率最大,占跨界交通碳排放的38%;主要材料内含能碳排放占间接碳排的73%,其中燃料的内含能碳排放占总内含能的份额最大,达51%。;(4)从人均碳足迹角度比较,厦门市人均碳足迹和丹佛市的人均直接碳排(层次1+层次2)分别为5.74 t CO2e/人、18.9 t CO2e/人,包含3个层次的人均碳足迹分别为9.01 tCO2e/人、25.3 t CO2e/人,其中跨界交通引起的碳排放均占总碳足迹的10%左右,主要材料的内含能引起的碳排放分别占到总碳足迹的26%、15%;通过国内外典型城市不同层次碳足迹比较可见厦门还是相对低碳的,但有个显著的特点是主要消耗物质的内含碳排放比例较高,这在一定程度上说明了发展中国家城市消耗更多的基础材料,进一步证明了传统核算中忽略的第3层次碳排放核算与管理的重要性。  相似文献   

7.

Purpose

Renewable energy sources, particularly biofuels, are being promoted as possible solutions to address global warming and the depletion of petroleum resources. In this context, biodiesel is a solution to the growing demand for renewable fuels. Beef tallow is the second leading raw material after soybean oil used in biodiesel production in Brazil. Evaluating and addressing the environmental impacts of beef tallow biodiesel are of great importance for its life cycle impact assessment (LCIA).

Methods

Inventory data on tallow and biodiesel production were collected from the literature and from a primary data source provided by a Brazilian biodiesel plant. The modeled system represents the Brazilian reality for the 2005–2015 decade. Subsequently, the environmental impacts of beef tallow biodiesel production were characterized for a selection of environmental impact indicators: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and water footprint (assessed based on blue water use (BWU) and blue water consumption (BWC) indicators). From the characterization of these environmental burdens, the main sources of environmental impact were evaluated. Sensitivity analysis was conducted to verify the influence of key parameters (emission factor, energy consumption, and prices) on changes in the environmental load of beef tallow biodiesel.

Results and discussion

Carbon flux results indicate that beef tallow biodiesel production acts as a carbon source. Namely, pasture carbon uptake (91% of all carbon input) is lower than combined biogenic and fossil CO2 emissions, which are controlled by cattle enteric fermentation as methane (72%) and by thermal energy processes (25%). Otherwise, thermal energy production accounts for 80% of total AP emissions, and cattle urine and manure are responsible for 70% of total EP emissions. The BWC and BWU water footprints of the whole process are controlled by electricity usage, which was greater than 90% for each indicator due to the high proportion of total energy (70%) derived from hydropower in Brazil. The environmental burden from transportation is minimal compared to other processes. Tallow biodiesel GWP can be improved if the carbon uptake potential from grass and low fertilizer utilization are accurately considered, as observed in the sensitivity analysis. For each MJ of beef tallow biodiesel produced, 4.6 g of CO2 is released to the atmosphere.

Conclusions

Methane emissions, mainly due to cattle enteric fermentation, and thermal energy processes at the industrial units were the main sources of environmental GWP, AP, and EP impacts. Otherwise, water footprint indicators were associated with the high proportion of total energy derived from hydropower in Brazil.
  相似文献   

8.

Scope and Background

The environmental effectiveness of the Norwegian beverage sector has been studied in a Factor 10 perspective. The objective of the study was to identify strategies that could make the beverage sector radically more effective from an environmental and resource perspective, leading to a Factor 10 improvement. Another main purpose of the work was to test the potential for using Life Cycle Assessment (LCA) methodology on an economic sector with a network of product chains, rather than for a single product.

Methods

Life Cycle Assessment data from STØ’s own studies and literature studies have been used as a basis for analysis of the environmental status of the beverage sector in Norway. The functional unit was defined as the amount of beverage products consumed per capita in Norway in the year 2000. The study includes raw material production, production of the beverage product, packaging manufacture, distribution, use and waste management of the products. The study has, for practical reasons, been limited to the environmental impact indicators total energy consumption and global warming potential. This was done as other types of data have been difficult to obtain for all of the products that were studied (tap water, coffee, milk, soft drinks, beer, squash, juice and bottled water).

Results and Discussion

The study shows differences between the drinking products with respect to energy consumption and emissions that can contribute to global warming. Due to large uncertainties in the data, general conclusions regarding the differentiation of products based on environmental performance should be made with care. Production and distribution of tap water is, however, significantly less energy intensive than the other products. For the impact categories studied, production of raw materials was the most important part of the life cycle for most drinking products.

Conclusions and Perspective

The most significant contributions to achieving a Factor 10 development can be made by consuming more water, especially tap water, and through improving raw material production in the agricultural sector. Packaging and distribution is responsible for only a small part of the energy consumption and emissions leading to global warming. Optimal packaging sizes might however reduce loss of products in the user phase, which is important in order to improve the system. A Factor 10 level seems achievable only if the consumption of tap water is increased to a high level.
  相似文献   

9.

Background

Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research.

Methods/Findings

The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.

Conclusion

An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper.  相似文献   

10.

Purpose

The cultivation of pomegranate worldwide has increased sharply in the past few years, mainly due to the growing perception that this fruit has numerous medical benefits. Despite the proliferation of studies delving into the properties of pomegranate from a medical and dietary perspective, its analysis from an environmental perspective has yet to be carried out in depth. Hence, the present study aims at understanding the life cycle environmental impacts in terms of greenhouse gas (GHG) emissions derived from the cultivation, processing and distribution abroad of fresh pomegranate grown at an innovative farm in a hyper-arid area in the region of Ica (Peru).

Methods

The international standards for life cycle methodologies were considered in order to obtain the overall carbon footprint (CFP) of fresh pomegranate cultivation, processing and distribution. Data acquisition was performed at the cultivation site and supported by the ecoinvent® database, whereas GHG emissions were modelled using the IPCC 2007 method. In addition, biogenic carbon sequestration was included in the assessment, using two distinct models, a first one to model the aerial carbon sequestered by the pomegranate trees and a second, using the IPCC Soil Carbon Tool for soil storage.

Results and discussion

Annual results show that on-site GHG emissions can be mitigated to a great extent in the first years of production thanks to biogenic carbon sequestration. However, through time, this tendency is reverted, and in years of maximum pomegranate productivity, GHG emissions are estimated to outweigh those linked to sequestration, despite the relevant minimization of emissions when using innovative irrigation schemes as compared to the conventional flood irrigation in the region.

Conclusions

Despite the threat in terms of water depletion and security, the expansion of Peru’s agricultural frontier in hyper-arid areas appears to be a feasible strategy for carbon fixation, although current agricultural practices, such as the use of machinery or electricity, need to be optimized to make positive the carbon balance.
  相似文献   

11.

Purpose

The area of oil palm plantations in Malaysia is expanding by approximately 0.14 million hectare per year, and with the increasing demand for palm oil worldwide, there is no sign of the expansions slowing down. This study aims to identify the greenhouse gas emissions associated with land conversion to oil palm, in a life cycle perspective.

Methods

LCA methodology is applied to existing land use change data. The assessment includes the issue of temporary carbon storage in the plantations. Through quantification of emissions from state forest reserve and rubber plantation conversions, the average Malaysian palm oil-related land use changes are calculated.

Results and discussion

The results show that there are high emissions associated with the conversion of Malaysian state forest reserve to oil palm, whereas the conversion of rubber leaves a less significant carbon debt when indirect land use change is not included. Looking at the average Malaysian land use changes associated with oil palm shows that land use change emissions are responsible for approximately half of the total conventional biodiesel production emissions. The sensitivity analysis shows that the results could be significantly influenced by data variations in indirect land use changes, peat soils, and state forest reserve carbon stock.

Conclusions

The relatively extensive conversions of the state forest reserve must be reversed and preferably with a shift toward conversion of degraded land in order for the average Malaysian land use changes to have less impact on the production life cycle of palm oil and biodiesel.  相似文献   

12.

Background, aim and scope  

Tank-to-Wheels (TtW) makes the largest contribution to the total Well-to-Wheels (WtW) energy consumption and greenhouse gas (GHG) emissions from fossil-derived transportation fuels. The most commonly adopted TtW methodologies to obtain vehicle energy consumption, energy efficiency, and GHG emissions used to date all have significant limitations. A new TtW methodology, which combines micro-scale virtual vehicle simulation with macro-scale fleet modeling, is proposed in this paper. The models capabilities are demonstrated using a case study based on data from the passenger car sector in Great Britain.  相似文献   

13.
我国典型城市化石能源消费CO2排放及其影响因素比较研究   总被引:1,自引:0,他引:1  
郑颖  逯非  刘晶茹  王效科 《生态学报》2020,40(10):3315-3327
城市是化石能源消费和CO_2排放的主要区域。分析典型城市化石能源消费CO_2排放特征,明确不同城市CO_2排放动态及主要影响因素的差异,是开展城市减排行动的重要科学依据。采用IPCC推荐方法及中国的排放参数核算11个典型城市2006—2015年间化石能源消费产生的CO_2排放量。根据各城市经济发展和CO_2排放特征将之分为四类:经济高度发达城市(北京、上海、广州)、高碳排放城市(重庆、乌鲁木齐、唐山)、低排放低增长城市(哈尔滨、呼和浩特和大庆)和低排放高增长城市(贵阳、合肥),并运用对数平均迪氏指数法(Logarithmic Mean Divisia Index,即LMDI分解法)对比分析了四类城市CO_2排放量的影响因素。结果表明:(1)研究期内大部分城市CO_2排放总量有所增加,仅北京和广州呈下降趋势,工业部门CO_2排放在城市排放总量及其变化中占据主导地位;四类城市的人均CO_2排放量表现出与排放总量相似的变化趋势;CO_2排放强度整体上表现为经济高度发达城市(均值为0.88 t CO_2/万元)低排放低增长城市(均值为2.82 t CO_2/万元)低排放高增长城市(均值为3.05 t CO_2/万元)高碳排放城市(均值为6.62 t CO_2/万元)。(2)在城市CO_2排放的影响因素中,经济发展和人口规模均是4类城市CO_2排放增长的促进因素,但经济发展效应的累积贡献值大于人口规模效应;能源强度降低是4类城市CO_2排放最主要的抑制因素,且经济高度发达和高碳排放城市的抑制作用强于其他两类城市;对第三产业GDP年平均增速高于第二产业的6个城市来说,产业结构是CO_2排放的抑制因素;能源结构的变化仅对煤炭消费比重较低且降幅较大的北京和广州的CO_2排放是抑制作用,累积贡献值分别为-21.73Mt和-0.03Mt,而对其他城市,特别是高碳排放城市的CO_2排放具有明显的促进作用。  相似文献   

14.
中国能源消费碳排放的时空特征   总被引:2,自引:0,他引:2  
舒娱琴 《生态学报》2012,32(16):4950-4960
选择联合国政府间气候变化专门委员会(IPCC)的部门方法和8大类能源,采用1990年至2009年的中国能源统计数据,按照自下而上的思路,对我国各省区的碳排放量进行估算,并从碳排放量、碳排放强度、人均碳排放量和碳排放密指标出发,深入分析了各省区碳排放的时空特征差异。以期对国内碳排放的时空特征分析,有助于决策者和能源分析家提高节能减排政策制定的有效性。  相似文献   

15.

Purpose

There are many recent proposals in life cycle assessment (LCA) to calculate temporary storage of carbon in bio-based products. However, there is still no consensus on how to deal with the issue. The main questions are: how do these proposals relate to each other, to what extent are they in line with the classical LCA method (as defined in ISO 14044) and the global mass balances as proposed by the IPCC, and is there really a need to introduce a discounting system for delayed CO2 emissions?

Methods

This paper starts with an analysis of the widely applied specification of PAS 2050 and the ILCD Handbook, both specifying the credit for carbon sequestration as ‘optional’ in LCA. From this analysis, it is concluded that these optional calculations give rather different results compared to the baseline LCA method. Since these optional calculations are not fully in line with the global carbon mass balances, a new calculation method is proposed. To validate the new method, two cases (one on wood and one bamboo products) are given. These cases show the practical application and the consequences of the new approach. Finally, the main issue is evaluated and discussed: is it a realistic approach to allocate less damage to the same emission, when it is released later in time?

Results and discussion

This paper proposes a new approach based on the global carbon cycle and land-use change, translated to the level of individual products in LCA. It is argued that only a global growth of forest area and a global growth of application of wood in the building industry contribute to extra carbon sequestration, which might be allocated as a credit to the total market of wood products in LCA. This approach is different from approaches where temporary storage of carbon in trees is directly allocated to a product itself.

Conclusions

In the proposed approach, there seems to be no need for a discounting system of delayed CO2 emissions. The advantage of wood and wood-based products can be described in terms of land-use change on a global scale in combination with a credit for heat recovery at the end-of-life (if applicable).  相似文献   

16.

Background

The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers.

Objectives

To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector.

Methods

A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases.

Results

Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car.

Conclusions

Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.  相似文献   

17.

1 Background

The U.S. Government has encouraged shifting from internal combustion engine vehicles (ICEVs) to alternatively fueled vehicles such as electric vehicles (EVs) for three primary reasons: reducing oil dependence, reducing greenhouse gas emissions, and reducing Clean Air Act criteria pollutant emissions. In comparing these vehicles, there is uncertainty and variability in emission factors and performance variables, which cause wide variation in reported outputs.

2 Objectives

A model was developed to demonstrate the use of Monte Carlo simulation to predict life cycle emissions and energy consumption differences between the ICEV versus the EV on a per kilometer (km) traveled basis. Three EV technologies are considered: lead-acid, nickel-cadmium, and nickel metal hydride batteries.

3 Methods

Variables were identified to build life cycle inventories between the EVs and ICEV. Distributions were selected for each of the variables and input to Monte Carlo Simulation soft-ware called Crystal Ball 2000®.

4 Results and Discussion

All three EV options reduce U.S. oil dependence by shifting to domestic coal. The life cycle energy consumption per kilometer (km) driven for the EVs is comparable to the ICEV; however, there is wide variation in predicted energy values. The model predicts that all three EV technologies will likely increase oxides of sulfur and nitrogen as well as particulate matter emissions on a per km driven basis. The model shows a high probability that volatile organic compounds and carbon monoxide emissions are reduced with the use of EVs. Lead emissions are also predicted to increase for lead-acid battery EVs. The EV will not reduce greenhouse gas emissions substantially and may even increase them based on the current U.S. reliance on coal for electricity generation. The EV may benefit public health by relocating air pollutants from urban centers, where traffic is concentrated, to rural areas where electricity generation and mining generally occur. The use of Monte Carlo simulation in life cycle analysis is demonstrated to be an effective tool to provide further insight on the likelihood of emission outputs and energy consumption.  相似文献   

18.
We estimated carbon pools and emissions from deforestation in northern Argentine forests between 1900 and 2005, based on forest inventories, deforestation estimates from satellite images and historical data on forests and agriculture. Carbon fluxes were calculated using a book-keeping model. We ran 1000 simulations for a 105-year period with different combinations of values of carbon stocks (Mg C ha−1), soil carbon in the top 0.2 m, and annual deforestation series. The 1000 combinations of parameters were performed as a sensitivity analysis that for each run, randomly selected the values of each variable within a predefined range of values and probability distributions. Using the simulation outputs, we calculated the accumulated C emissions due to deforestation from 1900 to 2005 and the annual emission as the average of the 1000 simulations, and uncertainties of our estimates as the standard deviation. We found that northern Argentine forests contain an estimated 4.54 Pg C (2.312 Pg C in biomass and 2.233 Pg C in soil). Between 1900 and 2005 approximately 30% of the forests were deforested, yielding carbon emissions of 0.945 (SD = 0.270) Pg C. Estimated average annual carbon emissions between 1996 and 2005, mostly from deforestation of the Chaco dry forests, were 20,875 (SD = 6,156) Gg C y−1 (1 Gg = 10−6 Pg). These values represent the largest source of carbon from land-cover change in the extra-tropical southern hemisphere, between 0.9 and 2.7% of the global carbon emissions from deforestation, and approximately 10% of carbon emissions from the Brazilian Amazon. Deforestation, which has accelerated during the last decades as a result of modern agriculture expansion, represents a major national source of greenhouse gases and the second emission source, after fossil fuel consumption by fixed sources. We conclude that Argentine forests are an important carbon pool and emission source that need more attention for accurate global estimates, and seasonally dry forest deforestation is a key component of the Argentine carbon cycle. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
F. P. O'Mara 《Annals of botany》2012,110(6):1263-1270

Background

Grasslands are a major part of the global ecosystem, covering 37 % of the earth''s terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world''s natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change.

Scope

Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective.

Conclusions

Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world''s existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.  相似文献   

20.

Background, aims and scope  

Food production is essential to life. Modern farming uses considerable resources to produce arable crops. Analysing the environmental burdens of alternative crop production methods is a vital tool for policymakers. The paper describes the production burdens (calculated by life cycle analysis) of three key arable crops: bread wheat, oilseed rape and potatoes as grown in England and Wales using organic and non-organic (contemporary conventional) systems. Resource use (e.g. abiotic and energy) and burdens from emissions are included (e.g. global warming potential on a 100-year basis, global warming potential (GWP), and eutrophication and acidification potentials).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号