首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) improve functioning of legume-Rhizobium symbiosis under salinity. However, plant responses to mycorrhization vary depending on the plant and fungal species. The current study aimed to compare the effectiveness of a native inoculum from saline soil and two exotic isolates, Funneliformis mosseae and Rhizophagus irregularis on two Cajanus cajan (pigeonpea) genotypes (Paras, Pusa 2002) subjected to NaCl stress. Salinity depleted nodulation and nutrient status in both genotypes with higher negative effects in Paras. Although all AM fungi improved growth, R. irregularis performed better by promoting higher biomass accumulation, nodulation, N2 fixation and N, P uptake which correlated with higher AM colonization. R. irregularis inoculated plants also accumulated higher trehalose in nodules due to decreased trehalase and increased trehalose-6-P synthase, trehalose-6-phosphatase activities. The results suggest that higher stability of R. irregularis-pigeonpea symbiosis under salt stress makes it an effective ameliorator for overcoming salt stress in pigeonpea.  相似文献   

2.
Application of phosphatic (P) fertilizers and biosolids is known to enhance cadmium (Cd) contamination in saline soils. Increased concentration of dissolved chloride (Cl?) in soil solution significantly influences Cd bioavailability in P fertilizer- or biosolid-amended soils. Arbuscular mycorrhizal (AM) fungi have an ability to protect plants against salinity and heavy metals by mediating interactions between toxic ions and plant roots. The effects of Glomus mosseae (AM) and NaCl and Cd stresses on Cd uptake and osmolyte and phytochelatin (PCs) synthesis in Cajanus cajan (L.) Millsp. (pigeonpea) were studied under greenhouse conditions. Two genotypes [Sel 85?N (tolerant) and ICP 13997 (sensitive)] were subjected to NaCl (4 and 6?dS?m?1) and Cd (CdCl2, 25 and 50?mg?kg?1 dry soil) treatments. NaCl and Cd applied individually as well as in combination caused dramatic reductions in plant biomass and induced membrane peroxidation, ionic perturbations, and metabolite synthesis in both genotypes, although Sel 85?N was less affected than ICP 13997. Cadmium uptake was enhanced when NaCl was added along with Cd. The protection of growth in Sel 85?N was associated with restricted accumulation of Na+, Cl?, and Cd2+ and higher concentrations of stress metabolites (sugars, proteins, free amino acids, proline, glycine betaine). Cd led to a significant increase in biothiols (NP-SH) and glutathione (GSH), with a larger pool of NP-SH which strongly induced accumulation of phytochelatins, whereas no significant effects in their concentrations were detectable under NaCl stress. The interactive effects of NaCl and Cd on all parameters were larger than those of individual treatments. Fungal inoculations improved plant growth and reduced accumulation of toxic ions. Higher stress metabolite synthesis and PCs observed in AM plants of Sel 85?N indicated the role of an efficient AM symbiosis capable of attenuating NaCl and Cd stresses.  相似文献   

3.
Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
  相似文献   

4.
Trehalose metabolism is an essential component of the stress response in yeast cells. In this work we show that the products of the principal genes involved in trehalose metabolism in Schizosaccharomyces pombe, tps1+ (coding for trehalose-6-P synthase, Tps1p), ntp1+ (encoding neutral trehalase, Ntp1p) and tpp1+ (that codes for trehalose-6-P phosphatase, Tpp1p), interact in vitro with each other and with themselves to form protein complexes. Disruption of the gene tps1+ blocks the activation of the neutral trehalase induced by heat shock but not by osmotic stress. We propose that this association may reflect the Tps1p-dependent requirement for thermal activation of trehalase. Data reported here indicate that following a heat shock the enzyme activity of trehalase is associated with Ntp1p dimers or trimers but not with either Ntp1p monomers or with complexes involving Tps1p. These results raise the possibility that heat shock and osmotic stress activate trehalase differentially by acting in the first case through an specific mechanism involving Tps1p-Ntp1p complexes. This study provides the first evidence for the participation of the catabolic enzyme trehalase in the structural framework of a regulatory macromolecular complex containing trehalose-6-P synthase in the fission yeast.  相似文献   

5.
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.  相似文献   

6.
Arbuscular mycorrhizal (AM) fungi are known to alleviate heavy-metal stress in plants. The intent of the present work was to analyze accumulation of heavy metals (Cd and Zn) in nodules of two Cajanus cajan (L.) Millsp. genotypes and their subsequent impact on nitrogen fixation, oxidative stress, and non-protein thiols (glutathione and phytochelatins) with and without AM fungus Glomus mosseae. Accumulation of Cd and Zn in nodules resulted in sharp reduction in nodule number, nodule dry mass as well as nitrogen fixation (leghemoglobin and nitrogenase (N2ase)), although Cd had more pronounced effects than Zn. Cd-induced lipid peroxidation, H2O2 accumulation, and electrolyte leakage were largely reversed by Zn supplementation. Zn application significantly altered the negative effects of Cd on the synthesis of non-protein thiols, suggesting antagonistic behaviour of Zn. Higher concentration of Zn was more effective in lessening the negative effects of Cd than its lower concentration. Remarkable genotypic variation was found, with more severe effects of both the metals in P792 than Sel 85N. Glomus mosseae attenuated the phytotoxic effects of metals in nodules by decreasing metal uptake, oxidative stress, and by enhancing defense system ultimately leading to better nitrogen-fixing potential of pigeonpea nodules.  相似文献   

7.
A. Schubert  P. Wyss 《Mycorrhiza》1995,5(6):401-404
Root extracts of leek (Allium porrum L.) and soybean (Glycine max L. Merr.) showed trehalase activity which was inhibited by phloridzin and was several times higher than the activity of general -glucosidase. The activity had an acidic optimum. Trehalase activity in extracts of sporocarps and extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. (Trappe & Gerd.) was higher than in root extracts and had an optimum at pH 7. Following inoculation with G. mosseae, trehalase activity increased in mycorrhizal roots above the levels observed in nonmycorrhizal roots. Irrespective of fungal colonization, root trehalase activity increased in the presence of Mg2+, decreased in the presence of Mn2+ and Zn2+, and was unaffected by Na2EDTA.  相似文献   

8.
The present investigation was undertaken to determine the comparative efficacy of two arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae and Acaulospora laevis) with Trichoderma viride and Pseudomonas fluorescens on growth and yield of red bell pepper. The results indicate that F. mosseae colonized the plant roots better as compared to A. laevis and promoted maximum increment in AM spore number, root colonization, leaf area, acid phosphatase activity, early fruit formation along with maximum increase in fruit nitrogen, and protein content. Whereas F. mosseae+P. fluorescens promoted maximum increase in plant height, shoot weight, mycorrhizal dependency, chlorophyll a, alkaline phosphatase activity, and fruit phosphorus content. Regarding root length, root weight, leaf photosynthesis, chlorophyll b, number of fruits per plant and their fresh weight, it was found best in F. mosseae+A. laevis+P. fluorescens. Therefore, soil inoculation with suitable bioinoculant should be used at nursery stage for better yield.  相似文献   

9.
Lotus japonicus and Medicago truncatula model legumes, which form determined and indeterminate nodules, respectively, provide a convenient system to study plant-Rhizobium interaction and to establish differences between the two types of nodules under salt stress conditions. We examined the effects of 25 and 50mM NaCl doses on growth and nitrogen fixation parameters, as well as carbohydrate content and carbon metabolism of M. truncatula and L. japonicus nodules. The leghemoglobin (Lb) content and nitrogen fixation rate (NFR) were approximately 10.0 and 2.0 times higher, respectively, in nodules of L. japonicus when compared with M. truncatula. Plant growth parameters and nitrogenase activity decreased with NaCl treatments in both legumes. Sucrose was the predominant sugar quantified in nodules of both legumes, showing a decrease in concentration in response to salt stress. The content of trehalose was low (less than 2.5% of total soluble sugars (TSS)) to act as an osmolyte in nodules, despite its concentration being increased under saline conditions. Nodule enzyme activities of trehalose-6-phosphate synthase (TPS) and trehalase (TRE) decreased with salinity. L. japonicus nodule carbon metabolism proved to be less sensitive to salinity than in M. truncatula, as enzymatic activities responsible for the carbon supply to the bacteroids to fuel nitrogen fixation, such as sucrose synthase (SS), alkaline invertase (AI), malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC), were less affected by salt than the corresponding activities in barrel medics. However, nitrogenase activity was only inhibited by salinity in L. japonicus nodules.  相似文献   

10.
Salinity causes osmotic stress and negatively impacts plant growth and productivity. Proline is one of the most important osmoprotectants synthesized under stressed conditions. Accumulation of free proline occurs due to enhanced biosynthesis and repressed degradation, and both processes are controlled by feedback regulatory mechanisms. Arbuscular mycorrhizal (AM) fungi are considered to be bioameliorators of salinity stress due to their wide-ranging presence in contaminated soils and their role in modulation of biochemical processes. Chickpea is considered sensitive to salinity. However, reports on AM-induced osmoprotection through regulation of proline biosynthesis in chickpea genotypes are scant. The present study investigated the influence of AM symbiosis on proline metabolism in two chickpea (Cicer arietinum L.) genotypes (PBG-5 and CSG-9505) under salt stress and correlated the same with sodium (Na+) ion uptake. Salinity reduced plant biomass (roots and shoots), with roots being more negatively affected than shoots. Mycorrhizal colonization with Glomus mosseae was much stronger in PBG-5 and was correlated with reduced Na+ ion uptake and higher growth when compared with CSG-9505 under stressed and unstressed conditions. Mycorrhizal symbiosis with chickpea roots boosted proline biosynthesis by significantly increasing pyrroline-5-carboxylate synthetase (P-5-CS) and glutamate dehydrogenase (GDH) activities with a concomitant decline in proline dehydrogenase (ProDH) activity under salt stress. The enhancement of the activity of these enzymes was higher in PBG-5 than in CSG-9505 and could be directly correlated with the percent mycorrhizal colonization and Na+ uptake. The study indicated a strong role of AM symbiosis in enhancing stress tolerance in chickpea by significantly modulating proline metabolism and Na+ uptake.  相似文献   

11.
This study investigated the influence of inoculation with a plant growth-promoting rhizobacterium, Pseudomonas mendocina Palleroni, alone or in combination with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith) or Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, on antioxidant enzyme activities (catalase and total peroxidase), phosphatase activity, solute accumulation, growth and mineral nutrient uptake in leaves of Lactuca sativa L. cv. Tafalla affected by three different levels of salt stress. Salinity decreased lettuce growth, regardless of the biological treatment and of the salt stress level. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation treatments only were effective in increasing shoot biomass at the medium salinity level. At the highest salinity level, the water content was greater in leaves of plants treated with P. mendocina or G. mosseae. At the medium salinity level, G. intraradices- or G. mosseae-colonised plants showed the highest concentrations of foliar P. The P. mendocina- and G. mosseae-colonised plants presented higher concentrations of foliar K and lower concentrations of foliar Na under high salt conditions. Salt stress decreased sugar accumulation and increased foliar proline concentration, particularly in plants inoculated with the PGPR. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total peroxidase and catalase, of lettuce leaves compared to their respective non-stressed controls. The PGPR strain induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with selected PGPR could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   

12.
This study was designed to investigate the possible effects of 24-Epibrassinolide (BR), arbuscular mycorrhizal (AM) fungus, Glomus mosseae, singularly and collectively under salt stress in wheat (Triticum aestivum L.) plants. After foliar spraying of mycorrhizal and non-mycorrhizal plants by 5 µM epibrassinolide (24-Epi), they were treated with 0 and 150 mM NaCl for 2 weeks and then harvested. The results showed interactions of G. mosseae and 24-Epi could alleviate the adverse effects of salinity by improving relative water content (RWC) of leaves (62%), relative growth rate (40.74%), shoot fresh weights (39.83%) and shoot phosphorous content (63.93%), stimulating leaf enzymatic antioxidant activities including catalase (2.24 fold) and ascorbate peroxidase (2.18 fold) as well as malondialdehyde (36.17%) and H2O2 concentrations (49.74%) as compared to those of NaCl treatments. Moreover, mycorrhizal dependency of root dry weight (2%) and phosphorus concentration (0.4%) increased with AM infection and 24-Epi application under saline condition. Leaf RWC, also, negatively correlated with membrane electrolyte leakage. Furthermore, the greatest mitigating effects were observed in mycorrhizal plants subjected to NaCl and 24-Epi. This study indicated that 24-Epi application and AM fungi may synergistically mitigate harmful impacts of salinity in wheat plants.  相似文献   

13.
Endogenously synthesized trehalose is a stress protectant in Escherichia coli. Externally supplied trehalose does not serve as a stress protectant, but it can be utilized as the sole source of carbon and energy. Mutants defective in trehalose synthesis display an impaired osmotic tolerance in minimal growth media without glycine betaine, and an impaired stationary-phaseinduced heat tolerance. Mechanisms for stress protection by trehalose are discussed. The genes for trehalose-6-phosphate synthase (otsA) and anabolic trehalose-6-phosphate phosphatase (otsB) constitute an operon. Their expression is induced both by osmotic stress and by growth into the stationary phase and depend on the sigma factor encoded by rpoS (katF). rpoS is amber-mutated in E. coli K-12 and its DNA sequence varies among K-12 strains. For trehalose catabolism under osmotic stress E. coli depends on the osmoticcally inducible periplasmic trehalase (TreA). In the absence of osmotic stress, trehalose induces the formation of an enzyme IITre (TreB) of the group translocation system, a catabolic trehalose-6-phosphate phosphatase (TreE), and an amylotrehalase (TreC) which converts trehalose to free glucose and a glucose polymer.  相似文献   

14.
Improved salt tolerance of mycorrhizal plants is commonly attributed to their better mineral nutrition, particularly phosphorus. However, the effect of arbuscular-mycorrhizal (AM) fungi on salt tolerance may not be limited to this mechanism. We investigated the possibility that non-nutritional effects of AM fungi, based on proline accumulation or increased photosynthesis and related parameters, can influence the tolerance of lettuce (Lactuca sativa L.) to salinity. Three levels of salt (3, 4 and 5 g NaCl kg-1 dry soil) were applied and plants were maintained under these conditions for 7 weeks. The salt-treated AM plants produced greater root and shoot dry weights than unfertilized or P-fertilized non-AM controls. With increasing salinity, both shoot and root dry weights were reduced, but this decrease was greater in uninoculated plants. In particular, shoot dry weight was not reduced in G. fasciculatum-colonized plants as a consequence of salt, whereas in uninoculated plants it was reduced by about 35% at the highest salt level. Proline accumulation was considerably lower for P-amended non-AM and for AM plants except for G. mosseae-colonized plants than was the case for unamended plants. Transpiration, carbon dioxide exchange rate (CER), stomatal conductance and water use efficiency (WUE) were higher in mycorrhizal plants. At 5 g NaCl kg-1, both photosynthesis and WUE increased by more than 100% in mycorrhizal treatment relative to uninoculated plants. The contents of phosphorus of P-fertilized non-AM plants was similar to or higher than those of G. mosseae- and G. fasciculatum-colonized plants. Plants colonized by G. deserticola had the highest P-content regardless of salt level. Hence, the effect of G. mosseae and G. fasciculatum on salt tolerance in this experiment could not be attributed to a difference in the P content. The mechanisms by which these two fungi alleviated salt stress appeared to be based on physiological processes (increased CER, transpiration, stomatal conductance and WUE) rather than on nutrient uptake (N or P).  相似文献   

15.
Trehalose, a common microbial disaccharide, has been reported to be toxic to plants, and plant trehalase has therefore been hypothesized to function as a detoxifying enzyme. To test this, aseptically grown soybean (Glycine max L. Merr.) plantlets were supplied with trehalose. The plants accumulated trehalose only when validamycin A, a potent trehalase inhibitor, was added as well. Under these conditions, they accumulated trehalose to up to 8% of the dry weight in their primary leaves without any detectable impairment of growth or health. We have previously shown that in soybean nodules, trehalose is generated by the symbiotic bacteria, and trehalase is strongly induced. However, direct exposure of plants to trehalose did not affect their trehalase activity, whereas a treatment with auxin strongly increased it, indicating that the enzyme level is regulated by hormones rather than by its substrate. Addition of validamycin A to nodules caused an increase in the amount of trehalose and a decrease in the sucrose and starch pools, but nitrogen fixation was not affected. Similar results were obtained with cowpea (Vigna unguiculata L.) plantlets and nodules. These results indicate that plant trehalase is functional in metabolizing trehalose from exogenous and endogenous sources, even though the disaccharide has no obvious toxic effects.Abbreviations ABA abscisic acid - ARA acetylene-reduction activity (assay for nitrogenase) - 2,4-D 2,4-dichlorophenoxyacetic acid - DW dry weight - FW fresh weight - GA3 gibberellic acid - -NAA, -NAA -,-naphthaleneacetic acid We are indebted to Prof. Dr. W. Broughton (University of Geneva, Switzerland) for kindly providing us cowpea seeds and the symbiont strain Rhizobium sp. NGR 234. Validamycin A was a gift of Dr. J.-P. Métraux, Ciba, Basel. This work was supported by the Swiss National Foundation.  相似文献   

16.
The present study on efficacy of different Glomus species, an arbuscular mycorrhizal (AM) fungus (G. aggregatum, G. fasciculatum, G. mosseae, G. intraradices) on various growth parameters such as biomass, macro and micronutrients, chlorophyll, protein, cytokinin and alkaloid content and phosphatase activity of pink flowered Catharanthus roseus plants showed that all Glomus species except G. intraradices enhanced the chlorophyll, protein, crude alkaloid, phosphorus, sulphur, manganese and copper contents of C. roseus plants along with phosphatase activity significantly over uninoculated plants. However only G. mosseae and G. fasciculatum exhibited superior symbiotic relationship with the plant. G. mosseae was found to be the best for increasing the crude alkaloid content (8.19%) in leaf and also in increasing the quantity of important alkaloids vincristine and vinblastine.  相似文献   

17.
Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker’s yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301TPS1 overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301TPS1 were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301TPS1 was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker’s yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker’s yeast.  相似文献   

18.
Abstract

Legume-Rhizobium symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture. The nitrogen fixed by the root nodules not only affects the nitrogen cycle of nature, but is also of great economic importance. A number of physiological and biochemical processes in the nodules are affected by salt stress. The objective of this study was to evaluate the role of arbuscular mycorrhiza (AM) in moderating toxic effects of salt stress on nodular metabolism in Cajanus cajan (L.) Millspaugh (pigeonpea) cv. Manak. Exposure of plants to salinity stress (4, 6 and 8 dSm?1) caused ionic imbalance, which resulted in increased Na+ and reduced K+ and Ca2+ contents in the nodules. Salinity induced increased synthesis and accumulation of proline and glycine betaine. Salt stress significantly increased the antioxidant enzyme activities in the nodules of all plants. Nodular growth suffered remarkably and a marked decline in nodule biomass was observed under salt stress. Leghemoglobin content and acetylene reduction activity (ARA) also declined under saline conditions. AM could significantly improve nodule dry mass, leghemoglobin content and nitrogenase activity, and phosphorus content under salt stress. Activities of antioxidant enzymes increased markedly in nodules of mycorrhizal-stressed plants. This study suggested a correlation between improved functional efficiency of nodules and higher osmolyte accumulation and enhanced antioxidant enzyme activities of AM plants under stressed conditions relative to the nodules of uninoculated plants.  相似文献   

19.
Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号