首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heating an aqueous solution of the trinuclear ‘basic’ chromium(III) acetate led to the formation of several products which were separated by ion-exchange chromatography. Crystals of a new cyclic, hexanuclear Cr(III) compound, [Cr6(OH)10(O2CCH3)6(H2O)4]Cl2·13H2O (3·Cl2·13H2O) were obtained upon elution of the violet complex 3 with 0.5 M NaCl and slow evaporation of the eluent. The six chromium atoms in complex 3 form an almost planar, irregular hexagon with an overall symmetry close to C2h. By heating solid ‘basic’ chromium(III) acetate at 300 °C, followed by ion-exchange separation, a new hexanuclear complex, [Cr6O3(OH)(O2CCH3)9(H2O)4]2+ (4) has been obtained. Complex 4 has a {Cr6O4} core, which consists of a {Cr4O4} cubane type inner core with two external chromium centers attached to μ4-oxo(cube) ligands. A similar procedure, using ‘basic’ chromium(III) propionate led to the isolation of the dodecanuclear complex [Cr12O8(O2CCH2CH3)16(H2O)8]4+ (5) which has a {Cr12O8} core. The {Cr6O4} core in complex 4 can be regarded to be formed from a tetranuclear {Cr4O2} butterfly unit and a dinuclear {Cr2O2} unit. Similarly, the {Cr12O8} core in 5 can be considered to be constructed from two orthogonal {Cr6O4} units as in complex 4.  相似文献   

2.
BACKGROUND: Chromium(III) is generally thought to be an essential trace element that allows for proper glucose metabolism. However, chromium(III) picolinate, Cr(pic)3, a popular dietary supplement form of chromium, has been shown to be capable of generating hydroxyl radicals and oxidative DNA damage in rats. The cation [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, has been studied as an alternative supplemental source of chromium. It has been shown to increase insulin sensitivity and lower glycated hemoglobin levels in rats, making it attractive as a potential therapeutic treatment for gestational diabetes. To date, no studies have been published regarding the safety of Cr3 supplementation to a developing fetus. METHODS: From gestation days (GD) 6–17, mated CD‐1 female mice were fed diets delivering either 25 mg Cr/kg/day as Cr(pic)3, 3.3 or 26 mg Cr/kg/day as Cr3, or the diet only to determine if Cr3 could cause developmental toxicity. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS: No signs of maternal toxicity were observed. No decrease in fetal weight or significantly increased incidence of skeletal defects was observed in the Cr3 or Cr(pic)3 exposed fetuses compared to the controls. CONCLUSION: Maternal exposure to either Cr(pic)3 or Cr3 at the dosages employed did not appear to cause deleterious effects to the developing offspring in mice. Birth Defects Res (Part B), 80:1–5, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

3.
Products of the reduction of [CoNO2(NH3)5]2+ by Cr2+ were separated and identified under the conditions of [Cr2+]0/[Co(IlI)]0⩽3 and 0.02 M ⩽[H+] ⩽ 0.75 M. The product distribution was dependent on both [Cr2+]o and [H+]. The following mechanism is proposed: [CoNO2(NH3)5]2+ + Cr2+→Co2+ + [CrONO(H2O)5]2+ (i) [CrONO(H2O)5]2+ + H+→[Cr(H2O)6]3+ + HNO2 (ii) [CrONO(H2O)5]2+ + Cr2+→Cr(IV) + [CrNO(H2O)5]2+ (iii) Cr(IV) + Cr2+→[(H2O)4Cr(OH)2Cr(H2O)4]4+ (iv) HNO2 + 2Cr2+→[Cr(H2O)6]3+ + [CrNO(H2O)5]2+ (v)  相似文献   

4.
The essentiality of chromium(III) has been the subject of much debate, particularly in healthy subjects. Chromium(III)-containing supplements are widely used for body mass loss, building of lean muscle mass, and improving glucose and lipid metabolism. [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, is one of the most-studied chromium nutritional supplements. The current study evaluates the effects of long-term (15 months) supplementation with Cr3 on body mass and glucose metabolism in Wistar rats on traditional and cafeteria-style (high fat, high carbohydrate) diets. Male Wistar rats were randomly assigned to one of four treatment groups: (1) control diet (milled Harlan Teklad LM-485 rodent diet), (2) control diet?+?1 mg Cr3/kg body mass/day, (3) a cafeteria-style (CAF) diet (high fat, high carbohydrate), or (4) CAF diet?+?1 mg Cr3/kg/day. Cr3 supplementation had no effect on fasting blood glucose levels or blood glucose levels in response to glucose and insulin challenges. Rats consuming the CAF?+?Cr3 diet tended to have a significantly higher body mass than rats consuming the CAF diet, but necropsy results showed no difference in visceral fat or body wall thickness between groups. These data suggest that long-term Cr3 supplementation does not significantly affect body mass in rats consuming a normal diet or glucose levels or metabolism in rats consuming either diet.  相似文献   

5.
The X-ray photoelectron spectra for (NH4)3 [Rh(S5)3]·2H2O and (NH4)2[PtS17]·2H2O are consistent with those previously reported for (NH4)2 [Pt(S5)3]·2H2O, where different electron binding energies were observed for the structurally distinct sulfur atoms in the polysulfido ligands. The 4f binding energies for the platinum polysulfides are lower than those for platinum(IV) bonded to elements other than sulfur, and the 3d binding energies for the rhodium complex are lower than most values for rhodium(III) bonded to oxygen or nitrogen.  相似文献   

6.
Chromium(III) is considered as an essential element playing a role in carbohydrate and lipid metabolism, and various chemical forms of this element are widely used in dietary supplements. A new trinuclear chromium(III) glycinate complex [Cr3O(NH2CH2CO2)6(H2O)3]+NO3 (CrGly), an analogue of Cr3 (trinuclear Cr(III) propionate complex) has been synthesized as a potential source of supplementary Cr. In this study, we evaluated the acute toxicity class of CrGly in Wistar rats applying the OECD 423 procedure. Male and female Wistar rats (n = 12, 6 ♀ and 6 ♂) were given by gavage either a single dose of CrGly 2,000 mg/kg body mass (equals to 300 mg Cr(III)/kg body mass; in aqueous solution) or equivalent volumes of distilled water and fed ad libitum commercial Labofeed B diet, and observed carefully for 14 days, then sacrificed to collect blood and internal organs for biochemical and histologic examination. No death cases were detected. No abnormalities in animal behavior, body mass gains, gross organ histology, or blood morphology and biochemistry were observed. The results demonstrate that LD50 of CrGly is greater than 2,000 mg/kg when administrated orally to rat; thus, this compound appears to belong to the fifth category in the GHS system or the fourth class (“unclassified”) in the EU classification system.  相似文献   

7.
Abstract

Molecular modeling and energy minimisation calculations have been used to investigate the interaction of chromium(III) complexes in different ligand environments with various sequences of B-DNA. The complexes are [Cr(salen)(H2O)2]+; salen denotes 1, 2 bis-salicylideneaminoethane, [Cr(salprn)(H2O)2]+; salprn denotes 1, 3 bis- salicylideneamino-propane, [Cr(phen)3]3+; phen denotes 1, 10 phenanthroline and [Cr(en)3]3+; en denotes eth- ylenediamine. All the chromium(III) complexes are interacted with the minor groove and major groove of d(AT)12, d(CGCGAATTCGCG)2 and d(GC)12 sequences of DNA. The binding energy and hydrogen bond parameters of DNA-Cr complex adduct in both the groove have been determined using molecular mechanics approach. The binding energy and formation of hydrogen bonds between chromium(III) complex and DNA has shown that all complexes of chromium(III) prefer minor groove interaction as the favourable binding mode.  相似文献   

8.
A computational study of chromium(VI) and (V) peroxides, which exhibit important genotoxic and mutagenic activity, is reported. Energies and equilibrium geometries for [CrVI(O)(O2)2(OH)], [CrVI(O)(O2)2(OH2)], [CrVI(O)(O2)2(py)], [CrVI(OH)(O2)2(OH2)]+, [CrV(O)(O2)2(OH2)] and species were calculated using molecular mechanics calculations (MMFF94 and MM+), quantum calculations with semi-empirical methods (RHF and UHF/PM3) and density functional theory (pBP86/DN* or pBP/DN* and B3LYP/6-31G(d). Equilibrium geometries for the compounds [CrV(O2)3(OH)]2− and [CrV(O2)4]3− were determined by molecular mechanics. Vibrational frequencies, standard thermodynamic quantities and electronic spectra were calculated using B3LYP/6-31G(d). The structural relationship between all these species and an explanation of the formation of peroxo species in the acid-basic pH range are given. An experimental study of peroxo species in basic medium was also performed (synthesis, X-ray powder diffraction patterns and infrared spectra of the peroxo complexes isolated) but did not confirm the existence of a tri-peroxo complex in the solid phase.  相似文献   

9.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, H-PLN) was isolated from Plumbago zeylanica, the anticancer traditional Chinese medicine (TCM). Five new lanthanide(III) complexes of deprotonated plumbagin: [Y(PLN)3(H2O)2] (1), [La(PLN)3(H2O)2] (2), [Sm(PLN)3(H2O)2]⋅H2O (3), [Gd(PLN)3(H2O)2] (4), and [Dy(PLN)3(H2O)2] (5) were synthesized by the reaction of plumbagin with the corresponding lanthanide salts, in amounts equal to ligand/metal molar ratio of 3:1. The PLN-lanthanide(III) complexes were characterized by different physicochemical methods: elemental analyses, UV-visible, IR and 1H NMR and ESI-MS (electrospray ionization mass spectrum) as well as TGA (thermogravimetric analysis). The plumbagin and its lanthanide(III) complexes 1-5, were tested for their in vitro cytotoxicity against BEL7404 (liver cancer) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The five PLN-lanthanide (III) complexes 1-5 effectively inhibited BEL7404 cell lines growth with IC50 values of 11.0 ± 3.5, 5.1 ± 1.3, 6.1 ± 1.1, 6.4 ± 1.3, and 9.8 ± 1.5 μM, respectively, and exhibited a significantly enhanced cytotoxicity compared to plumbagin and the corresponding lanthanide salts, suggesting a synergistic effect upon plumbagin coordination to the Ln(III) ion. The lanthanide complexes under investigation also exerted dose- and time-dependent cytotoxic activity. [La(PLN)3(H2O)2] (2) and plumbagin interact with calf thymus DNA (ct-DNA) mainly via intercalation mode, but for [La(PLN)3(H2O)2] (2), the electrostatic interaction should not be excluded; the binding affinity of [La(PLN)3(H2O)2] (2) to DNA is stronger than that of free plumbagin, which may correlate with the enhanced cytotoxicity of the PLN-lanthanide(III) complexes.  相似文献   

10.
《Inorganica chimica acta》2006,359(5):1619-1626
The reaction of 1,4-dimethyl-1,4,7-triazacyclononane (L-Me2) with MnCl2 · 4H2O in acetonitrile gives, in the presence of sodium formate, hydrogen peroxide, triethylamine and KPF6, the dinuclear Mn(III)–Mn(IV) complex cation [(L-Me2)2Mn2(O)2(OOCH)]2+ (1) which crystallises as the hexafluorophosphate salt.The analogous reaction with sodium benzoate, however, yields the dinuclear Mn(III)–Mn(III) complex cation [(L-Me2)2Mn2(O)(OOCC6H5)2]2+ (2), isolated also as the hexafluorophosphate salt.In the case of sodium acetate, both cations, the Mn(III)–Mn(IV) complex [(L-Me2)2Mn2(O)2(OOCCH3)]2+ (3) and the known Mn(III)–Mn(III) complex [(L-Me2)2Mn2(O)(OOCCH3)2]2+ (4) are available, depending upon the molar ratio.The single-crystal X-ray structure analyses show for the green crystals of [1][PF6]1.5[Cl]0.5 · 1.5 H2O and [3][PF6]2 · (CH3)2CO, a Mn–Mn distance of 2.620(2) and 2.628(4) Å, respectively, while for the red-violet crystal of [4][PF6]2, a Mn–Mn distance of 3.1416(8) Å is observed.All four compounds show catalytic activity for the oxidation of isopropanol with hydrogen peroxide in water and in acetonitrile to give acetone in the presence of oxalic or ascorbic acid as co-catalysts.  相似文献   

11.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

12.
Guanine–guanine hydrogen bonding involving the Watson–Crick edge [N(1)H, N(2)H2] of one base and the Hoogsteen edge (N7, O6) of the other is the dominant association pattern in the solid-state structures of two hydrates of 9-ethylguanine (9-EtGH), and in adducts of 9-methylguanine (9-MeGH) with the Zn compounds [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) as well as [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) (9-MeA is 9-methyladenine). The structures of 9-EtGH·2H2O and 9-EtGH·3.5H2O are dominated by polymeric tape structures of the guanine and extended water clusters. In [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) the metalated guanine is involved in hydrogen bonding (GG3 motif) with a free 9-MeGH, which in turn is centrosymmetrically related to itself via hydrogen bonds involving N(2)H2 and N3 (GG4 motif). In [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) the metalated adenine base interacts via its Watson–Crick edge [N1, N(6)H2] with the sugar edge [N(2)H2, N3] of one of the guanine nucleobases of the GG pair. Crystallization of [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) from an aqueous solution containing 9-MeGH, 9-MeA, and ZnCl2 is fully unexpected in that the anticipated preference of Zn(II) for guanine-N7 is not realized and instead coordination to adenine-N7 is observed. The relevance of [ZnCl2(H2O)(9-MeGH-N7)]·(9-MeGH) and [ZnCl2(H2O)(9-MeA-N7)]·2(9-MeGH) for metal-containing nucleic acid triplex structures is discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Abstract

The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5′-mono- and -triphosphates in D2O solution at Ph′=3 were measured. The paramagnetic probes were [Cr(III)(H2O) 6]3+, [Cr(III)(H2O)3 (HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III) (H2O)3(UTP)?, while the matrix nucleotides (0.1 M) were H2AMP, HIMP?, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]?/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(α,β)], [Cr(III)(NH3)4(HPP)(α,β)], [Co(III)(NH3)3(H2PPP)(α,βγ)] and [Co(III)(NH3)4(HPP)(α,β)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(α,βγ)] complexes as well as the structures of the outer sphere [Cr(III) (H2O)6]3+-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)? species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(α,βγ)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7) (O…N = 2.82 Å). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2′)H group and the adenine N(3) (O…N = 2.80 Å) as well as phosphate oxygen atoms and a water molecule (O…O = 2.47 Å). The metal center has an almost regular octahedral coordination geometry.

The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar “anti” conformation around the N(9)-C(l′) glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)? complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O…O = 2.63 Å O…N = 2.72, 2.70 Å). For the H2AMP complex, the [Cr(III) (H2O)c]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s?1 (H(2)) for HIMP?. These results suggest that the dynamic relaxation effects can be only partially understood with molecular mechanics computations, although the success of the geometry calculations suggests that future efforts in the development of computational methods are justified.  相似文献   

14.
The synthesis and characterization by elemental analysis, emission atomic spectroscopy, TG measurements, magnetic measurements, FTIR, 1H NMR, UV–visible spectra and conductivity of a series of iron (II) and nickel (II) complexes with two heterocyclic ligands (L1(SMX): sulfamethoxazole and L2(MIZ): metronidazole) used in pharmaceutical field and with a new ligand derived benzoxazole (L3(MPBO): 2-(5-methylpyridine-2-yl)benzoxazole), were reported. The formulae obtained for the complexes are: [M(L1)2 Cl2nH2O, [M(L2)2Cl2(H2O)2]·H2O and [M(L3)2(OH)2nH2O. Stability constants of these complexes have been determined by potentiometric methods in water–ethanol (90:10, v/v) mixture at a 0.2 mol L?1 ionic strength (NaCl) and at 25.0 ± 0.1 °C. Sirko program was used to determine the protonation constants as well as the binding constants of three species [ML2H2]2+, [ML2] and [ML]2+. The antimicrobial activity of the ligands and complexes was evaluated in vitro against different human bacteria and fungi using agar diffusion method.Iron sulfamethoxazole complex showed a remarkable inhibition of bacteria growth especially on Staphylococcus aureus and P. aeruginosa. The iron metronidazole complex is active against yeasts especially on Candida tropicalis strain. Nickel complexes presented different antibacterial and antifungal behavior's against bacteria and fungal.The acute toxicity study revealed that the iron complexes are not toxic at 2000 mg/kg dose orally administrated.LD50 for nickel complexes was determined using graphical method.No significant differences in the body weights between the control and the treated groups of both rat sexes in subacute toxicity study using for iron complexes. Hematological and clinical blood chemistry analysis revealed no toxicity effects of the iron complexes. Pathologically, neither gross abnormalities nor histopathological changes were observed for these complexes.  相似文献   

15.
Bioaccessibility measurements have the potential to improve the accuracy of risk assessments and reduce the potential costs of remediation when they reveal that the solubility of chemicals in a matrix (e.g., soil) differs markedly from that in the critical toxicity study (i.e., the key study from which a toxicological or toxicity reference value is derived). We aimed to apply this approach to a brownfield site contaminated with chromium, and found that the speciation was CrIII, using a combination of alkaline digestion/diphenylcarbazide complexation and X-ray absorption near edge structure analysis. The bioaccessibility of Cr2O3, the compound on which a reference dose for CrIII is based, was substantially lower (<0.1%) than that of the CrIII in the soils, which was a maximum of 9%, giving relative bioaccessibility values of 13,000% in soil. This shows that the reference dose is based on essentially an insoluble compound, and thus we suggest that other compounds be considered for toxicity testing and derivation of reference dose. Two possibilities are CrCl3·6H2O and KCr(SO4)2·12H2O, which have been used for derivation of ecological toxicity reference values and are soluble at a range of dosing levels in our bioaccessibility tests.  相似文献   

16.
The acetylacetonates VO(acac)2, M(acac)3, where M = V, Mn or Fe and [M′(acac)2]n, where M′ = Co, Ni or Cu, have been reacted with pyridine-2,6-dicarboxylic acid (dipicH2) in acetone to afford the complexes VO(dipic)·2H2O, M(acac)(dipic)·xH2O [M = V, Mn or Fe and x = 1 or 0] and M2(dipic) (dipicH)2·yH2O [M = Co, Ni or Cu and y = 2 or 0]. The cobalt(II) and nickel(II) complexes are converted to polymeric [M(dipic)]n in ethanol and all three complexes formulated as M2(dipic)(dipicH)2 react with 2,2′2″-terpyridyl to yield M(dipic)(terpy)·3H2O. The vanadium(III) complex V(acac)(dipic) is oxidized to VO(dipic)·4H2O in aqueous solution via the vanadium(III) intermediate V(OH)(dipic)·2H2O. Tentative structural conclusions are drawn for certain of these new complexes based upon room temperature spectral and magnetic measurements. The characterization of these complexes has included selected studies of their X-ray photoelectron spectra.  相似文献   

17.
The new d–f cyanido-bridged 1D assembly [Nd(pzam)3(H2O)Mo(CN)8] · H2O was prepared by self-assembly of pyrazine-2-carboxamide (pzam), Nd(NO3) · nH2O and (Bu3NH)3[Mo(CN)8] · 4H2O in acetonitrile. X-ray crystallographic studies indicate that the complex comprises chains of alternating, cyanido-bridged [Nd(pzam)3(H2O)]3+ and Mo(CN)8]3? fragments. The magneto-structural properties have been studied by field-dependent magnetization and specific heat measurements at low temperatures (?0.3 K). Below ≈10 K the Nd(III) moment is well approximated by an effective spin S = 1/2, with anisotropic g-tensor. The exchange coupling between the Nd(III) and the Mo(V) spins S = 1/2 along the structural chains is found to be ferromagnetic, with J/kB = 1.8 ± 0.2 K and approximately XY (planar) anisotropy. No evidence for 3D interchain magnetic ordering is found. A comparison with magneto-structural data of other cyanido-bridged complexes involving the Nd(III) ion is presented.  相似文献   

18.
Efforts to delineate the interactions of neurotoxic Al(III) with low molecular mass substrates relevant to neurodegenerative processes, led to the investigation of the pH-specific synthetic chemistry of the binary Al(III)-[N-(phosphonomethyl) iminodiacetic acid] (Al-NTAP), Al(III)-[nitrilo-tris(methylene-phosphonic acid)] (Al-NTA3P), and Al(III)-[1-hydroxy ethylidene-1,1-diphosphonic acid] (Al-HEDP) systems, in correlation with solution speciation studies. Reaction of Al(NO3)3·9H2O with NTAP at pH 7.0 and 4.0 afforded the new species (CH6N3)4[Al2(C5H6NPO7)2(OH)2]·8H2O (1) and (NH4)2[Al2(C5H6NPO7)2(H2O)2]·4H2O (2), while reaction of Al(NO3)3·9H2O with NTA3P led to K8[Al2(C3H6NP3O9)2(OH)2]·20H2O (3). Complexes 13 were characterized by elemental analysis, FT-IR, 13C, 31P, 1H NMR (for 12 solid state and solution NMR where feasible), and X-ray crystallography. The structures of 13 reveal the presence of uniquely defined dinuclear complexes of octahedral Al(III) bound to fully deprotonated phosphonate ligands, water and hydroxo moieties. The aqueous solution speciation studies on the aforementioned binary systems project a clear picture of the binary Al(III)–(carboxy)phosphonate interactions and species under variable pH-conditions and specific Al(III):ligand stoichiometry. The concurrent solid state and solution work (a) exemplifies essential structural and chemical attributes of soluble aqueous species, reflecting well-defined interactions of Al(III) with phosphosubstrates and (b) strengthens the potential linkage of neurotoxic Al(III) chemical reactivity toward O,N-containing (carboxy)phosphate-rich cellular targets.  相似文献   

19.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

20.
The composition of taxifolin-iron ions complexes in an octanol-water biphasic system was studied using the method of absorption spectrophotometry. It was found that at pH 5.0 in an aqueous biphasic system the complex of [Tf · Fe2(OH) k (H2O)8 ? k ] is present, but at pH 7.0 and 9.0 the complexes of [Tf2 · Fe(OH) k (H2O)2 ? k ] and [Tf · Fe(OH) k (H2O)4 ? k ] are predominantly observed. The formation of a stable [Tf3 · Fe] complex occurred in octanol phase. The charged iron ion of this complex is surrounded by taxifolin molecules, which shield the iron ion from lipophilic solvent. During transition from water to octanol phase the changes of the composition of complexes are accompanied by reciprocal changes in portion of taxifolin and iron ions in these phases. It was shown that the portion of taxifolin in aqueous solution in the presence of iron ions is increased at high pH values, and the portion of iron ions is minimal at pH 7.0. In addition, the parameters of solubility limits of taxifoliniron ions complexes in an aqueous solution were determined. The data obtained gain a better understanding of the role of complexation of polyphenol with metal of variable valency in passive transport of flavonoids and metal ions across lipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号