共查询到20条相似文献,搜索用时 0 毫秒
1.
《中国科学:生命科学英文版》2017,(4)
正Dear Editor,Roots,as a major organ of plants,are involved in nutrient and water acquisition,and might play a vital role in yield increase and efficient N absorption with genetic improvement.Because of the great differences in growth period and pattern between the old and new rice cultivars,it is difficult to clarify how genetic improvements contribute to root growth in rice.For example,for a solution culture system,Wu et al.suggested that total root length increased with increasing year of release for maize hybrids,while shoot dry weight, 相似文献
2.
This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two
atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis
program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration
at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake
rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients
might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral
root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order
lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order
laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system. 相似文献
3.
Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years 总被引:7,自引:0,他引:7
BACKGROUND AND AIMS: New maize (Zea mays) hybrids outperformed old ones even at reduced N rates. Understanding the mechanisms of the differences in performance between newer and older hybrids under N deficiency could provide avenues for breeding maize cultivars with large yield under N deficiency, and reduce environmental pollution caused by N fertilizers. METHODS: N deficiency effects on grain weight, plant weight, harvest index, leaf area and photosynthetic traits were studied in the field for six maize hybrids released during the past 50 years to compare their tolerance and to explore their physiological mechanisms. KEY RESULTS: N deficiency decreased grain yield and plant weight in all hybrids, especially in the older hybrids. However, there was no significant difference in harvest index, rate of light-saturated photosynthesis (Psat) 20 d before flowering, leaf area or plant weight at flowering between the N-deficient and control plants of all hybrids. Dry matter production after flowering of the N-deficient plants was significantly lower than that of the control plants in all hybrids, especially in the older hybrids, and was mostly due to differences in the rate of decrease in photosynthetic capacity during this stage. The lower Psat of the older hybrids was not due to stomatal limitation, as there was no significant difference in stomatal conductance (gs) and intercellular CO2 concentration (Ci) between the hybrids. N deficiency accelerated senescence, i.e. decreased chlorophyll and soluble protein contents, after anthesis more for the earlier released hybrids than for the later ones. N deficiency decreased phosphoenolpyruvate carboxylase (PEPCase) activity significantly more in older hybrids than newer hybrids, and affected the maximal efficiency of PSII photochemistry (Fv/Fm) only in the old hybrids and at the late stage. CONCLUSIONS: Compared with older (earlier released) hybrids, newer (later released) hybrids maintained greater plant and grain weight under N deficiency because their photosynthetic capacity decreased more slowly after anthesis, associated with smaller non-stomatal limitations due to maintenance of PEPCase activity, and chlorophyll and soluble protein content. 相似文献
4.
Danilo Hottis Lyra Leandro de Freitas Mendonça Giovanni Galli Filipe Couto Alves Ítalo Stefanine Correia Granato Roberto Fritsche-Neto 《Molecular breeding : new strategies in plant improvement》2017,37(6):80
In maize breeding, genomic prediction may be an efficient tool for selecting single-crosses evaluated under abiotic stress conditions. In addition, a promising strategy is applying multiple-trait genomic prediction using selection indices (SIs), increasing genetics gains and reducing time per cycles. In this study, we aimed (i) to compare accuracy of single- and multi-trait genomic prediction (STGP; MTGP) in two maize datasets, (ii) to evaluate prediction of four selection indices that could contribute to the selection of tropical maize hybrids under contrasting nitrogen conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear (RKHS/GK) kernels in STGP and MTGP analyses. For either single-trait GBLUP and RKHS analyses, the highest values obtained for accuracy were 0.40 and 0.41 using harmonic mean (HM), respectively. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP seems to be suitable, increasing the accuracy. Adding grain yield and plant height in MTGP showed a slight improvement in accuracy compared to STGP. In general, there was a modest benefit of using single-trait RKHS and GK multi-trait, rather than GBLUP. 相似文献
5.
Root growth and nitrogen uptake in sycamore (Acer pseudoplantanus L.) seedlings in relation to nitrogen supply 总被引:1,自引:0,他引:1
Acer pseudoplatanus L. trees were grown in sand culture for 2 years and, in 1988, supplied with either 1.0 mol N m-3 (low N) or 6.0 mol N m-3 (high N) to precondition their growth. In 1989, the same trees received either high or low nitrogen, producing four treatments; High N in 1988/High N in 1989; High N in 1988/Low N in 1989; Low N in 1988/Low N in 1989; and Low N in 1988/High N in 1989. Plant growth was affected by N supply in both years. In 1989 the Low N/High N treated trees had the same overall mass, leaf mass and stem girth as the High N/High N treatment. Early spring growth of foliage and roots was conditional on nitrogen supplied in the previous season. Later, the rapid increases in leaf, stem and root growth under high N was through root uptake. Internal partitioning of growth was affected, with the Low N/High N treatment producing more new leaves on axillary shoots, and more new white roots on existing structures, than the Low N/Low N treatment. Despite effects of the N preconditioning on the structure of both canopy and root system, nitrogen uptake was solely dependent on the current nitrogen supply. 相似文献
6.
Root growth responses to lead in young maize seedlings 总被引:5,自引:0,他引:5
Obroucheva N.V. Bystrova E.I. Ivanov V.B. Antipova O.V. Seregin I.V. 《Plant and Soil》1998,200(1):55-61
This work was undertaken to follow the appearance and development of symptoms of lead toxicity in growing roots of seedlings. The effects of lead nitrate (10-2–105 M) were studied on the roots of maize (Zea mays) seedlings, cvs. Diamant and Sterling. The roots were grown on filter paper either on glass in trays or in large Petri dishes. The following characteristics of root growth were studied: seed germination, length of primary and seminal roots, number of seminal and lateral roots, length of branching zone, length of meristem and fully-elongated cells and the number of fully-elongated cells along the daily length increment. 10-2 M lead nitrate exerted a clear toxic effect on root elongation just after radicle emergence; its influence on shoot growth was weak. However 10-2 M Pb solution did not affect either radicle emergence itself or seminal root emergence, which can be explained by the impermeability of seed testa to lead salt. The inhibitory effect of 10-3 M lead nitrate appeared a day later and was not as toxic: the growth of primary and seminal roots proceeded at lower rate due to a partial inhibition of cell division and cell elongation in them. 10-3 M lead nitrate modified the root system morphology: it exerted no effect on the emergence of lateral roots and their number, but induced a more compact distribution of lateral roots along a shorter branching zone due to a reduced length of mature cells in the primary root. As a result of the more prominent inhibition of primary root growth, a shorter branching zone with more compactly located lateral roots occupied a position much closer to the root tip than in roots grown without the influence of lead. 相似文献
7.
Allocating resources to growth or to reproduction is a fundamental tradeoff in evolutionary life history theory. In environments with unpredictable food resources, natural selection is expected to favor increased allocation to reproduction. Although effects of selection are realized only across generations, short-term changes in food predictability might influence intra-generational tradeoffs in resource allocation. We assessed the ability of fathead minnows, Pimephales promelas, to adjust allocation to growth and reproduction in response to predictable, unpredictable, and switched feeding schedules. Fish in the switched treatments were changed from unpredictable to predictable feeding schedules just after reaching sexual maturity. Egg production did not differ significantly among treatments despite the fact that females on the unpredictable and switched feeding schedules grew more slowly than those on the predictable schedule. Switched males were heavier and had proportionally larger testes than males in predictable and unpredictable treatments. Increased allocation to reproduction or growth by fish on unpredictable and switched feeding schedules was associated with changes in gut length relative to body mass. Both sexes showed a remarkable degree of phenotypic plasticity in response to resource availability and sex differences in allocation patterns were consistent with adaptive responses in the context of the fathead mating system. 相似文献
8.
Maize and pigweed response to nitrogen supply and form 总被引:1,自引:0,他引:1
As nitrogen management practices change to achieve economic and environmental goals, effects on weed-crop competition must be examined. Two greenhouse experiments investigated the influence of N amount and form on growth of maize and redroot pigweed (Amaranthus retroflexus L.). In Experiment 1, maize and pigweed were grown together in a replacement series (maize: pigweed ratios of 0:4, 1:3, 2:2, 3:1, 4:0) under three NH4NO3-N supplies (0, 110, and 220 mg N kg-1 soil). Maize was planted into established pigweed and plants were harvested 24 days after maize germination. Pigweed responded more to supplemental N than maize and accumulated 2.5 times as much N in shoots at the high N supply. Competition effects were not significant. Maize and pigweed were grown separately in Experiment 2 and supplied 220 mg N kg-1 as either Ca(NO3)2 or (NH4)2SO4 plus a nitrification inhibitor (enhanced ammonium supply, EAS). In maize, EAS treatment did not affect shoot growth and reduced root growth 25% relative to the NO3-N treatment. In pigweed, shoot and root growth were restricted 23 and 86% by EAS treatment, respectively. Total plant N accumulation under EAS treatment was higher in maize, less in pigweed. Under EAS treatment, pigweed leaves were crinkled and chlorotic; leaf disks extracted in 70% ethanol, pH 3, contained less malate and oxalate but more NH4 + compared to the NO3-N treatment. Maize leaf disk malate levels were generally higher compared to pigweed but were less due to EAS treatment. Ammonium level in maize leaf disks was unaffected by N form and EAS treatment increased oxalate levels. Final bulk soil pH was generally lower in pots where pigweed were grown and tended to be lower due to EAS. Leaf disk malate levels and soil pH were positively associated. Results indicate that pigweed is more likely to compete with maize when high levels of NO3-N are provided. Enhancing the proportion of N supplied as NH4 + should restrict the growth of NH4 +-sensitive pigweed. 相似文献
9.
Response of enzymes and storage proteins of maize endosperm to nitrogen supply 总被引:7,自引:0,他引:7
下载免费PDF全文

To examine the effects of N nutrition upon endosperm development, maize (Zea mays) kernels were grown in vitro with either 0, 3.6, 7.1, 14.3, or 35.7 millimolar N. Kernels were harvested at 20 days after pollination for determination of enzyme activities and again at maturity for quantification of storage products and electrophoretic separation of zeins. Endosperm dry weight, starch, zein-N, and nonzein-N all increased in mature kernels as N supply increased from zero to 14.3 millimolar. The activities of sucrose synthase, aldolase, phosphoglucomutase, glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, and acetolactate synthase increased from 1- to 2.5-fold with increasing N supply. Adenosine diphosphate-glucose pyrophosphorylase and both ATP- and PPi-dependent phosphofructokinases increased to lesser extents, while no significant response was detected for hexose kinases and glutamine synthetase. Nitrogen-induced changes in enzyme activities were often highly correlated with changes in final starch and/or zein-N contents. Separation of zeins indicated that these peptides were proportionately enhanced by N supply, with the exception of C-zein, which was relatively insensitive to N. These data indicate that at least a portion of the yield increase in maize produced by N fertilization is induced by a modification of kernel metabolism in response to N supply. 相似文献
10.
Stanisław Grzesiak 《Acta Physiologiae Plantarum》2001,23(4):443-456
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse
experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of
grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical
soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated
by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury
by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their
drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and
in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize
hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking
of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established
on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation
with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for
control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter
the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for
the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids.
Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury
were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS,
ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or
50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better
manifested under severe conditions of water deficit in the soil. 相似文献
11.
Background and Aims
Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.Methods
Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.Key Results
Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.Conclusions
It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth. 相似文献12.
Paterson E Sim A Standing D Dorward M McDonald AJ 《Journal of experimental botany》2006,57(10):2413-2420
Root proliferation as a response to exploit zones of nutrient enrichment in soil has been demonstrated for a wide range of plant species. However, the effectiveness of this as a strategy to acquire nutrients is also dependent on interactions with the soil microbial community. Specifically, C-flow from roots modifies microbial activity and probably the balance between nutrient mineralization and immobilization processes in the rhizosphere. In this study, near-natural abundance 13C-labelling and gene-reporter methods were applied to determine the effects of uneven nitrate supply to roots of Hordeum vulgare on assimilate partitioning and root exudation. Plants were initially grown in uniform nitrate supply in split-root, sand microcosms after which one treatment continued to receive uniform supply, and the other received nitrate to one root compartment only. At the time of imposing the treatments, the CO2 supplied to the plants was switched to a cylinder source, providing a distinct delta13C-signature and allowing the fate of new assimilate within the plants to be determined. The labelling approach allowed quantification of the expected preferential allocation of new C-assimilate to roots in enriched nitrate, prior to any measurable effect on whole biomass or root architecture. Biosensor (lux-marked Pseudomonas fluorescens 10586 pUCD607) bioluminescence, quantified spatially by CCD imaging, demonstrated that root exudation was significantly increased for roots in enriched nitrate. This response of root exudation, being primarily associated with root apices and concurrent with enhanced assimilate supply, strongly suggests that C-flow from roots is an integral component of the proliferation response to nitrate. 相似文献
13.
14.
? Premise of the study: Fitness of plant hybrids often depends upon the environment, but physiological mechanisms underlying the differential responses to habitat are poorly understood. We examined physiological responses of Ipomopsis species and hybrids, including reciprocal F(1)s and F(2)s, to variation in soil moisture and nitrogen. ? Methods: To examine responses to moisture, we subjected plants to a dry-down experiment. Nitrogen was manipulated in three independent experiments, one in the field and two in common environments. ? Key results: Plants with I. tenuituba cytoplasmic background had lower optimal soil moisture for photosynthesis, appearing better adapted to dry conditions, than plants with I. aggregata cytoplasm. This result supported a prediction from prior studies. The species and hybrids did not differ greatly in physiological responses to nitrogen. An increase in soil nitrogen increased leaf nitrogen, carbon assimilation, integrated water-use efficiency, and growth, but the increases in growth were not mediated primarily by an increase in photosynthesis. In neither the field, nor in common-garden studies, did physiological responses to soil nitrogen differ detectably across plant types, although only I. aggregata and hybrids increased seed production in the field. ? Conclusions: These results demonstrate differences in photosynthetic responses between reciprocal hybrids and suggest that water use is more important than nitrogen in explaining the relative photosynthetic performance of these hybrids compared to their parents. 相似文献
15.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration. 相似文献
16.
Yan Yanyan Hou Peng Duan Fengying Niu Li Dai Tingbo Wang Keru Zhao Ming Li Shaokun Zhou Wenbin 《Photosynthesis research》2021,150(1-3):295-311
Photosynthesis Research - In this work, we sought to understand how breeding has affected photosynthesis and to identify key photosynthetic indices that are important for increasing maize yield in... 相似文献
17.
局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响 总被引:2,自引:1,他引:2
通过向玉米幼苗分根装置一侧根室的营养液中加入聚乙二醇(PEG 6000)来模拟植物水分胁迫,并设3种供氮形态(硝态氮、铵态氮、两者各占50%的混合氮),且只加入到一侧根室(当氮加入到和PEG同侧时为水氮异区,加入到无PEG一侧时为水氮同区),测定各处理的光合、生理指标,以研究局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响.结果表明:同一氮形态供给下水氮同区植株的光合速率(Pn)、最大净光合速率(Pmax)、光饱和点(LSP)、CO2饱和点(CSP)、叶绿素a、b及叶绿素总含量、根系活力、氮含量和生物量高于水氮异区,光呼吸速率(Rp)、CO2补偿点(CCP)、木质部汁液脱落酸(ABA)浓度、氮利用效率、水分利用效率低于水氮异区;供混合氮和硝态氮的植株Pn、Pmax、LSP、CSP、氮含量和生物量高于供铵态氮的植株,而CCP、Rp、木质部汁液ABA浓度、氮利用效率、水分利用效率变化趋势则相反.可见,同一供氮形态下,水氮同区比水氮异区更利于植物生长,而水氮利用效率在水氮异区下较高;混合氮和硝态氮对植物生长的促进作用优于单一供给铵态氮,但铵态氮更有利于提高水氮利用效率. 相似文献
18.
Witold Grzebisz 《Plant and Soil》2013,368(1-2):23-39
Background
Crop yield depends in large part on the availability and accessibility of nitrogen in the soil. For optimal yield, the soil nitrogen must be available at critical periods of crop development, and in a form that is accessible for plant uptake and use. Ancillary crop nutrients can alter the plant’s ability to access and utilize nitrogen. Therefore, crop fertilization with magnesium should focus on its effect on nitrogen management. This conceptual review aims to assess the present state of knowledge regarding the importance of magnesium in fulfilling both objectives.Scope
The response to fertilizer magnesium of high-yielding wheat, maize, sugar beet and potato crops was evaluated using published and unpublished data on yield, yield components and nitrogen uptake. A simple, stepwise regression and path analysis was applied to explain the effect of fertilizer magnesium on yield and yield components.Conclusions
The effect of soil or foliar applied magnesium on yield of crops was inconsistent due to (i) weather experienced during the growth season, (ii) rates of applied fertilizer nitrogen, and (iii) the (natural background levels of?) magnesium available in the soil. The yield increase due to magnesium application was related to the extra supply of nitrogen. In cereals, magnesium application resulted in a higher number of ears and/or thousand grain weight (TGW), stressing the magnesium-sensitive stages of yield formation. The increase of sugar beet yield was most pronounced in dry years. The main conclusion gleaned from the review underlines a positive effect of magnesium on nitrogen uptake efficiency. The optimal yield forming effect of fertilizer magnesium can generally occur under conditions of relatively low nitrogen supply (soil + fertilizer nitrogen), but high supply of magnesium. This phenomenon can best be described as “magnesium-induced nitrogen uptake”. 相似文献19.
20.
Litter quality parameters of Danthonia richardsonii grown under CO2 concentrations of ≈ 359 & ≈ 719 μL L? 1 at three mineral N supply rates (2.2, 6.7 & 19.8 g m? 2 y? 1) were determined. C:N ratio was increased in senesced leaf (enhancement ratios, Re/c, of 1.25–1.67), surface litter (1.34–1.64) and root (1.13–1.30) by CO2 enrichment. After 3 years of growth, nonstructural carbohydrate concentrations were reduced in senesced leaf lamina (avg. Re/c= 0.84) but not in root in response to CO2 enrichment. Cellulose concentrations increased slightly in senesced leaf (avg. Re/c= 1.07) but not in root in response to CO2 enrichment. Lignin and polyphenolic concentrations in senesced leaf and root were not changed by CO2 enrichment. Decomposition, measured as cumulative respiration in standard conditions in vitro, was reduced in leaf litter grown under CO2 enrichment. Root decomposition in vitro was lower in the material produced under CO2 enrichment at the two higher rates of mineral N supply. Significant correlations between decomposition of leaf litter and initial %N, C:N ratio and lignin:N ratio were found. Decomposition in vivo, measured as carbon disappearance from the surface litter was not affected by CO2 concentration. Arbuscular mycorrhizal infection was not changed by CO2 enrichment. Microbial carbon was higher under CO2 enrichment at the two higher rates of mineral N supply. Possible reasons for the lack of effect of changes in litter quality on in‐sward decomposition rates are discussed. 相似文献