首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltage dependence of the steady state inactivation parameter (h infinity) of the sodium current in the squid giant axon is known to be shifted in the hyperpolarizing direction by hydrocarbons and it has been suggested that the shifts arise from thickness changes in the axon membrane, analogous to those produced in lipid bilayers (Haydon, D. A., and J. E. Kimura, 1981, J. Physiol. [Lond.], 312:57-70; Haydon, D. A., and B. W. Urban, 1983, J. Physiol. [Lond.], 338:435-450; Haydon, D. A., J. R. Elliott, and B. M. Hendry, 1984, Curr. Top. Membr. Transp., 22:445-482). This hypothesis has been tested systematically by examining the effects of a range of concentrations of cyclopentane on the high-frequency capacitance per unit area both of the axonal membrane and of lipid bilayers formed from monoolein plus squalene. A similar comparison has been made for cyclopropane and n-butane, both at a pressure of 1 atm. The results are consistent with the notion that thickness increases in the axolemma produce the shifts in h infinity. Except at very high concentrations, however, the thickness changes in the lipid bilayer were too small to account for the h infinity shifts. A possible explanation of this finding is discussed.  相似文献   

2.
Kilic G  Lindau M 《Biophysical journal》2001,80(3):1220-1229
We investigated the voltage dependence of membrane capacitance of pituitary nerve terminals in the whole-terminal patch-clamp configuration using a lock-in amplifier. Under conditions where secretion was abolished and voltage-gated channels were blocked or completely inactivated, changes in membrane potential still produced capacitance changes. In terminals with significant sodium currents, the membrane capacitance showed a bell-shaped dependence on membrane potential with a peak at approximately -40 mV as expected for sodium channel gating currents. The voltage-dependent part of the capacitance showed a strong correlation with the amplitude of voltage-gated Na+ currents and was markedly reduced by dibucaine, which blocks sodium channel current and gating charge movement. The frequency dependence of the voltage-dependent capacitance was consistent with sodium channel kinetics. This is the first demonstration of sodium channel gating currents in single pituitary nerve terminals. The gating currents lead to a voltage- and frequency-dependent capacitance, which can be well resolved by measurements with a lock-in amplifier. The properties of the gating currents are in excellent agreement with the properties of ionic Na+ currents of pituitary nerve terminals.  相似文献   

3.
Gating currents in the node of Ranvier: voltage and time dependence.   总被引:4,自引:0,他引:4  
Like the axolemma of the giant nerve fibre of the squid, the nodal membrane of frog myelinated nerve fibres after blocking transmembrane ionic currents exhibits asymmetrical displacement currents during and after hyperpolarizing and depolarizing voltage clamp pulses of equal size. The steady-state distribution of charges as a function of membrane potential is consistent with Boltzmanns law (midpoint potential minus 33.7 mV; saturation value 17200 charges/mum-2). The time course of the asymmetry current and the voltage dependence of its time constant are consistent with the notion that due to a sudden change in membrane potential the charges undergo a first order transition between two configurations. Size and voltage dependence of the time constant are similar to those of the activation of the sodium conductance assuming m-2h kinetics. The results suggest that the presence of ten times more sodium channels (5000/mum-2) in the node of Ranvier than in the squid giant axon with similar sodium conductance per channel (2-3 pS).  相似文献   

4.
The Hodgkin-Huxley equations for space-clamped squid axon (18 degrees C) have been modified to approximate voltage clamp data from repetitive-firing crustacean walking leg axons and activity in response to constant current stimulation has been computed. The m infinity and h infinity parameters of the sodium conductance system were shifted along the voltage axis in opposite directions so that their relative overlap was increased approximately 7 mV. Time constants tau m and tau h, were moved in a similar manner. Voltage-dependent parameters of delayed potassium conductance, n infinity and tau n, were shifted 4.3 mV in the positive direction and tau n was uniformly increased by a factor of 2. Leakage conductance and capacitance were unchanged. Repetitive activity of this modified circuit was qualitatively similar to that of the standard model. A fifth branch was added to the circuit representing a transient potassium conductance system present in the repetitive walking leg axons and in other repetitive neurons. This model, with various parameter choices, fired repetitively down to approximately 2 spikes/s and up to 350/s. The frequency vs. stimulus current plot could be fit well by a straight line over a decade of the low frequency range and the general appearance of the spike trains was similar to that of other repetitive neurons. Stimulus intensities were of the same order as those which produce repetitive activity in the standard Hodgkin-Huxley axon. The repetitive firing rate and first spike latency (utilization time) were found to be most strongly influenced by the inactivation time constant of the transient potassium conductance (tau b), the delayed potassium conductance (tau n), and the value of leakage conductance (gL). The model presents a mechanism by which stable low frequency discharge can be generated by millisecond-order membrane conductance changes.  相似文献   

5.
We used the two-microelectrode voltage clamp technique and tetrodotoxin (TTX) to investigate the possible occurrence of slow inactivation of sodium channels in canine cardiac Purkinje fibers under physiologic conditions. The increase in net outward current during prolonged (5-20 s) step depolarizations (range -70 to +5 mV) following the application of TTX is time dependent, being maximal immediately following depolarization, and declining thereafter towards a steady value. To eliminate the possibility that this time-dependent current was due to inadequate voltage control of these multicellular preparations early during square clamp pulses, we also used slowly depolarizing voltage clamp ramps (range 5-100 mV/s) to ensure control of membrane potential. TTX-sensitive current also was observed with these voltage ramps; the time dependence of this current was demonstrated by the reduction of the peak current magnitude as the ramp speed was reduced. Reducing the holding potential within the voltage range of sodium channel inactivation also decreased the TTX-sensitive current observed with identical speed ramps. These results suggest that the TTX-sensitive time-dependent current is a direct measure of slow inactivation of canine cardiac sodium channels. This current may play an important role in modulating the action potential duration.  相似文献   

6.
The Hodgkin-Huxley kinetic parameters, alpha h and beta h, which govern the rate of recovery from and development of sodium channel inactivation, respectively, have been measured as a function of membrane potential and external pH using a three-pulse protocol. alpha h but not beta h is substantially accelerated by reducing external pH from 7.4 to 6.4. The alpha h vs. voltage curve appears to be selectively shifted in the depolarizing direction by approximately 12 mV for this pH change, giving an apparent, h infinity curve shift of approximately 6 mV in the same direction (less inactivation).  相似文献   

7.
Summary The change in membrane capacitance and conductance of squid giant axons during hyper- and depolarizations was investigated. The measurements of capacitance and conductance were performed using an admittance bridge with resting, hyperpolarized and depolarized membranes. The duration of DC pulses is 20–40 msec and is long enough to permit the admittance measurements between 1 and 50 kHz. The amplitudes of DC pulses were varied between 0 and 40mV for both depolarization and hyperpolarization. Within these limited experimental conditions, we found a substantial increase in membrane capacitance with depolarization and a decrease with hyperpolarization. Our results indicate that the change in membrane capacitance will increase further if low frequencies are used with larger depolarizing pulses. The change in membrane capacitance is frequency dependent and it increases with decreasing frequencies. The analyses based on an equivalent circuit (vide infra) gives rise to a time constant of active membrane capacitance close to that of sodium currents. This result indicates that the observed capacitance changes may arise from sodium channels. A brief discussion is given on the nature of frequency-dependent membrane capacitance of nerve axons.  相似文献   

8.
Patch-clamp recording from the plasmalemma of rat cultured astrocytes reveals the presence of both voltage-dependent sodium and voltage-dependent potassium conductances. These conductances are similar but not identical to the corresponding conductances in the axolemma. Whereas the h infinity relation of the sodium channels has the same voltage dependence as in the nodal axolemma, the peak current-voltage relation is shifted by about 30 mV along the voltage axis in the depolarizing direction. It is speculated that the glial cells synthesize sodium and potassium channels for later insertion into the axolemma of neighbouring axons. The astrocytes also express a plasmalemmal voltage-dependent anion conductance that is turned on at about -40 mV (that is, near the resting potential of the cultured astrocytes). The channels involved are large enough to be just permeable to glutamate but not to ascorbate. It is suggested that the conductance of this channel for chloride plays a physiological role in the spatial buffering of potassium by glial cells.  相似文献   

9.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

10.
Potential-dependent inhibition of charge movement components by nifedipine was studied in intact, voltage-clamped, frog skeletal muscle fibers. Available charge was reduced by small shifts in holding potential (from -100 mV to -70 mV) in 2 microM nifedipine, without changes in the capacitance deduced from control (-120 mV to -100 mV) voltage steps made at a fully polarized (-100 mV) holding potential. These voltage-dependent effects did not occur in lower (0-0.5 microM) nifedipine concentrations. The voltage dependence of membrane capacitance at higher (10 microM) nifedipine concentrations was reduced even in fully polarized fibers, but shifting the holding voltage produced no further block. Voltage-dependent inhibition by nifedipine was associated with a fall in available charge, and a reduction in the charge and capacitance-voltage relationships and of late (q gamma) charging transients. It thus separated a membrane-capacitance with a distinct and steep steady-state voltage dependence. Tetracaine (2 mM) reduced voltage-dependent membrane capacitance and nonlinear charge more than did nifedipine. However, nifedipine did not exert voltage-dependent effects on charging currents, membrane capacitance, or inactivation of tetracaine-resistant (q beta) charge. This excludes participation of q beta, or the membrane charge as a whole, from the voltage-dependent effects of nifedipine. Rather, the findings suggest that the charge susceptible to potential-dependent block by nifedipine falls within the tetracaine-sensitive (q gamma) category of intramembrane charge.  相似文献   

11.
Associated with the opening and closing of the sodium channels of nerve membrane is a small component of capacitative current, the gating current. After termination of a depolarizing step the gating current and sodium current decay with similar time courses. Both currents decay more rapidly at relatively negative membrane voltages than at positive ones. The gating current that flows during a depolarizing step is diminished by a pre-pulse that inactivates the sodium permeability. A pre-pulse has no effect after inactivation has been destroyed by internal perfusion with the proteolytic enzyme pronase. Gating charge (considered as positive charge) moves outward during a positive voltage step, with voltage dependent kinetics. The time constant of the outward gating current is a maximum at about minus 10 mV, and has a smaller value at voltages either more positive or negative than this value.  相似文献   

12.
The influence of radio frequency (RF) fields of 180, 900, and 1800 MHz on the membrane potential, action potential, L-type Ca(2+) current and potassium currents of isolated ventricular myocytes was tested. The study is based on 90 guinea-pig myocytes and 20 rat myocytes. The fields were applied in rectangular waveguides (1800 MHz at 80, 480, 600, 720, or 880 mW/kg and 900 MHz, 250 mW/kg) or in a TEM-cell (180 MHz, 80 mW/kg and 900 MHz, 15 mW/kg). Fields of 1800 and 900 MHz were pulsed according to the GSM-standard of cellular phones. The specific absorption rates were determined from computer simulations of the electromagnetic fields inside the exposure devices by considering the structure of the physiological test arrangement. The electrical membrane parameters were measured by whole cell patch-clamp. None of the tested electrophysiological parameters was changed significantly by exposure to RF fields. Another physical stimulus, lowering the temperature from 36 degrees C to 24 degrees C, decreased the current amplitude almost 50% and shifted the voltage dependence of the steady state activation parameter d(infinity) and inactivation parameter f(infinity) of L-type Ca(2+) current by about 5 mV. However, at this lower temperature RF effects (900 MHz, 250 mW/kg; 1800 MHz, 480 mW/kg) on L-type Ca(2+) current were also not detected.  相似文献   

13.
The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depolarizations. At TPeA concentrations < 50 microM the current decay is well fit by a single exponential over a wide voltage range. At higher concentrations a second exponential component is observed, with the fast component being dominant. The blocking and unblocking rate constants of TPeA were estimated from these data, using a three-state kinetic model, and were found to be voltage dependent. The apparent inhibition constant at 0 mV is 9.8 microM, and the blocking site is located 41 +/- 3% of the way into the membrane field from the cytoplasmic side of the channel. Raising the external Na concentration from 10 to 100 mM reduces the TPeA-modified inactivation rates, consistent with a mechanism in which external Na ions displace TPeA from its binding site within the pore. TBA (500 microM) and TPeA (20 microM) induce a use-dependent block of Na channels characterized by a progressive, reversible, decrease in current amplitude in response to trains of depolarizing pulses delivered at 1-s intervals. Tetrapropylammonium (TPrA), a related symmetrical tetra-alkylammonium (TAA), blocks Na currents but does not alter inactivation (O'Leary, M. E., and R. Horn. 1994. Journal of General Physiology. 104:507-522.) or show use dependence. Internal TPrA antagonizes both the TPeA-induced increase in the apparent inactivation rate and the use dependence, suggesting that all TAA compounds share a common binding site in the pore. A channel blocked by TBA or TPeA inactivates at nearly the normal rate, but recovers slowly from inactivation, suggesting that TBA or TPeA in the blocking site can interact directly with a cytoplasmic inactivation gate.  相似文献   

14.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

15.
We have monitored the effect of ergosterol on electrical capacitance and electrical resistance of the phosphatidylcholine bilayer membranes using chronopotentiometry method. The chronopotentiometric characteristic of the bilayers depends on constant-current flow through the membranes. For low current values, no electroporation takes place and the membrane voltage rises exponentially to a constant value described by the Ohm's law. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations is presented.  相似文献   

16.
Sodium-calcium exchange current was isolated in inside-out patches excised from guinea pig ventricular cells using the giant patch method. The outward exchange current decayed exponentially upon activation by cytoplasmic sodium (sodium-dependent inactivation). The kinetics and mechanism of the inactivation were studied. (a) The rate of inactivation and the peak current amplitude were both strongly temperature dependent (Q10 = 2.2). (b) An increase in cytoplasmic pH from 6.8 to 7.8 attenuated the current decay and shifted the apparent dissociation constant (Kd) of cytoplasmic calcium for secondary activation of the exchange current from 9.6 microM to < 0.3 microM. (c) The amplitude of exchange current decreased synchronously over the membrane potential range from -120 to 60 mV during the inactivation, indicating that voltage dependence of the exchanger did not change during the inactivation process. The voltage dependence of exchange current also did not change during secondary modulation by cytoplasmic calcium and activation by chymotrypsin. (d) In the presence of 150 mM extracellular sodium and 2 mM extracellular calcium, outward exchange current decayed similarly upon application of cytoplasmic sodium. Upon removal of cytoplasmic sodium in the presence of 2-5 microM cytoplasmic free calcium, the inward exchange current developed in two phases, a fast phase within the time course of solution changes, and a slow phase (tau approximately 4 s) indicative of recovery from sodium-dependent inactivation. (e) Under zero-trans conditions, the inward current was fully activated within solution switch times upon application of cytoplasmic calcium and did not decay. (f) The slow recovery phase of inward current upon removal of cytoplasmic sodium was also present under the zero-trans condition. (g) Sodium-dependent inactivation shows little or no dependence on membrane potential in guinea pig myocyte sarcolemma. (h) Sodium-dependent inactivation of outward current is attenuated in rate and extent as extracellular calcium is decreased. (i) Kinetics of the sodium-dependent inactivation and its dependence on major experimental variables are well described by a simple two-state inactivation model assuming one fully active and one fully inactive exchanger state, whereby the transition to the inactive state takes place from a fully sodium-loaded exchanger conformation with cytoplasmic orientation of binding sites (E1.3Ni).  相似文献   

17.
The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV 相似文献   

18.
Fang J  Iwasa KH 《Biophysical journal》2007,93(5):1809-1817
The motile activity of outer hair cells' cell body is associated with large nonlinear capacitance due to a membrane motor that couples electric displacement with changes in the membrane area, analogous to piezoelectricity. This motor is based on prestin, a member of the SLC26 family of anion transporters and utilizes the electric energy available at the plasma membrane associated with the sensory function of these cells. To understand detailed mechanism of this motile activity, we examined the effect of amphipathic ions, cationic chlorpromazine and anionic trinitrophenol, which are thought to change the curvature of the membrane in opposite directions. We found that both chemicals reduced cell length at the holding potential of -75 mV and induced positive shifts in the cells' voltage dependence. The shift observed was approximately 10 mV for 500 microM trinitrophenol and 20 mV for 100 microM cationic chlorpromazine. Length reduction at the holding potential and voltage shifts of the motile activity were well correlated. The voltage shifts of nonlinear capacitance were not diminished by eliminating the cells' turgor pressure or by digesting the cortical cytoskeleton. These observations suggest that the membrane motor undergoes conformational transitions that involve changes not only in membrane area but also in bending stiffness.  相似文献   

19.
The basic electrical parameters of bilayer lipid membranes are capacitance and resistance. This article describes the application of chronopotentiometry to the research of lipid bilayers. Membranes were made from egg yolk phosphatidylcholine. The chronopotentiometric characteristic of the membranes depends on the current value. For low current values, no electroporation takes place and the voltage rises exponentially to a constant value. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations are presented.  相似文献   

20.
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号