首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4+ and CD8+ T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.  相似文献   

2.
Hematopoietic stem cells (HSC) are rare, multipotent cells capable of generating all specialized cells of the blood system. Appropriate regulation of HSC quiescence is thought to be crucial to maintain their lifelong function; however, the molecular pathways controlling stem cell quiescence remain poorly characterized. Likewise, the molecular events driving leukemogenesis remain elusive. In this study, we compare the gene expression profiles of steady-state bone marrow HSC to non-self-renewing multipotent progenitors; to HSC treated with mobilizing drugs that expand the HSC pool and induce egress from the marrow; and to leukemic HSC in a mouse model of chronic myelogenous leukemia. By intersecting the resulting lists of differentially regulated genes we identify a subset of molecules that are downregulated in all three circumstances, and thus may be particularly important for the maintenance and function of normal, quiescent HSC. These results identify potential key regulators of HSC and give insights into the clinically important processes of HSC mobilization for transplantation and leukemic development from cancer stem cells.  相似文献   

3.
4.
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.  相似文献   

5.
We consider a mathematical model describing evolution of normal and leukemic hematopoietic stem cells (HSC) and differentiated cells in bone marrow. We focus on chronic myeloid leukemia (CML), a cancer of blood cells resulting from a malignant transformation of hematopoietic stem cells. The dynamics are given by a system of ordinary differential equations for normal and leukemic cells. Homeostasis regulates the proliferation of normal HSC and leads the dynamics to an equilibrium. This mechanism is partially efficient for leukemic cells. We define homeostasis by a functional of either hematopoietic stem cells, differentiated cells or both cell lines. We determine the number of hematopoietic stem cells and differentiated cells at equilibrium. Conditions for regeneration of hematopoiesis and persistence of CML are obtained from the global asymptotic stability of equilibrium states. We prove that normal and leukemic cells can not coexist for a long time. Numerical simulations illustrate our analytical results. The study may be helpful in understanding the dynamics of normal and leukemic hematopoietic cells.  相似文献   

6.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

7.
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.Key words: thrombopoietin, TPO, Mpl, hematopoietic stem cell, hematopoiesis, Jak2, MPLW515K, MPLW515L  相似文献   

8.
Stem cells are central to the development and maintenance of many tissues. This is due to their capacity for extensive proliferation and differentiation into effector cells. More recently it has been shown that the proliferative and differentiative ability of stem cells decreases with age, suggesting that this may play a role in tissue aging. Down syndrome (DS), is associated with many of the signs of premature tissue aging including T-cell deficiency, increased incidence of early Alzheimer-type, Myelodysplastic-type disease and leukaemia. Previously we have shown that both hematopoietic (HSC) and neural stem cells (NSC) in patients affected by DS showed signs of accelerated aging. In this study we tested the hypothesis that changes in gene expression in HSC and NSC of patients affected by DS reflect changes occurring in stem cells with age. The profiles of genes expressed in HSC and NSC from DS patients highlight pathways associated with cellular aging including a downregulation of DNA repair genes and increases in proapoptotic genes, s-phase cell cycle genes, inflammation and angiogenesis genes. Interestingly, Notch signaling was identified as a potential hub, which when deregulated may drive stem cell aging. These data suggests that DS is a valuable model to study early events in stem cell aging.  相似文献   

9.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

10.
Human hematopoietic stem cells (HSCs) and their progenitors can be maintained in vitro in long-term bone marrow cultures (LTBMCs) in which constituent HSCs can persist within the adherent layers for up to 2 months. Media replenishment of LTBMCs has been shown to induce transition of HSCs from a quiescent state to an active cycling state. We hypothesize that the media replenishment of the LTBMCs leads to the activation of important regulatory genes uniquely involved in HSC proliferation and differentiation. To profile the gene expression changes associated with HSC activation, we performed suppression subtractive hybridization (SSH) on day 14 human LTBMCs following 1-h media replenishment and on unmanipulated controls. The generated SSH library contained 191 differentially up-regulated expressed sequence tags (ESTs), the majority corresponding to known genes related to various intracellular processes, including signal transduction pathways, protein synthesis, and cell cycle regulation. Nineteen ESTs represented previously undescribed sequences encoding proteins of unknown function. Differential up-regulation of representative genes, including IL-8, IL-1, putative cytokine 21/HC21, MAD3, and a novel EST was confirmed by semi-quantitative RT-PCR. Levels of fibronectin, G-CSF, and stem cell factor also increased in the conditioned media of LTBMCs as assessed by ELISA, indicating increased synthesis and secretion of these factors. Analysis of our library provides insights into some of the immediate early gene changes underlying the mechanisms by which the stromal elements within the LTBMCs contribute to the induction of HSC activation and provides the opportunity to identify as yet unrecognized factors regulating HSC activation in the LTBMC milieu.  相似文献   

11.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

12.
The role of apoptosis in regulating hematopoietic stem cell numbers   总被引:3,自引:0,他引:3  
The importance of apoptosis, in combination with proliferation, in maintaining stable populations has become increasingly clear in the last decade. Perturbation of either of these processes can have serious consequences, and result in a variety of disorders. Moreover, as the players and pathways gradually emerge, it turns out that there are strong connections in the regulation of cell cycle progression and apoptosis. Apoptosis, proliferation, and the disorders resulting from aberrant regulation have been studied in a variety of cell types and systems. Hematopoietic stem cells (HSC) are defined as primitive mesenchymal cells that are capable of both self-renewal and differentiation into the various cell lineages that constitute the functioning hematopoietic system. Many (but certainly not all) mature hematopoietic cells are relatively short-lived, sometimes with a half-life in the order of days. Homeostasis requires the production of 108 (mouse) to 1011 (human) cells each day. All of these cells are ultimately derived from HSC that mostly reside in the bone marrow in adult mammals. The study of the regulation of HSC numbers has focussed mainly on the choice between self-renewal and differentiation, symmetric and asymmetric cell divisions. Recently, however, it has been directly demonstrated that apoptosis plays an important role in the regulation of hematopoietic stem cells in vivo.  相似文献   

13.
The hematopoietic system is the paradigm for adult mammalian stem-cell research. Recent advances have improved our understanding of the cellular and molecular components of the microenvironment - or niche - that regulates hematopoietic stem cells (HSCs). Here, we summarize the molecular and cellular properties of two types of niche, namely the osteoblastic and the vascular niche, in homeostatic regulation of HSC behavior, including its maintenance, proliferation, differentiation, mobilization and homing. We highlight the most recent findings and point to an important trend to the study of niche activity in cancers. Knowledge of the basic features of the HSC niches, including physical location, cell type and various signaling pathways, should provide insights into other stem-cell systems and benefit clinical applications.  相似文献   

14.
Both cellular as well as extracellular matrix components of the stem cell microenvironment, or niche, are critical in stem cell regulation. Recent data highlight a central role for osteoblasts and their by product osteopontin as a key part of the hematopoietic stem cell (HSC) niche. Herein we describe a model for the yin and yang of HSC regulation mediated by osteoblasts. In this respect, osteoblasts synthesise proteins with opposing effects on HSC proliferation and differentiation highlighting their pivotal role in adult hematopoiesis. Although osteoblasts play a central role in HSC regulation other stromal and microenvironmental cell types and their extracellular matrix proteins also contribute to this biology. For example, the glycosaminoglycan hyaluronic acid as well as the membrane bound form of stem cell factor are also key regulators of HSC. Osteopontin and these “niche” molecules are not only involved in regulation of HSC quiescence but also effect HSC homing, trans-marrow migration and lodgement. Accordingly this leads us to expand upon Schofield’s niche hypothesis: we propose that the HSC niche is critical for attraction of primitive hematopoietic progenitors to the endosteal region and tightly tethering them within this location, and by doing so placing them into intimate contact with cells such as osteoblasts whose extracellular products are able to exquisitely regulate their fate.  相似文献   

15.
骨髓增生异常综合征(MDS)是一组起源于造血干细胞(HSC)的异质性克隆性疾患,以形态学改变(病态造血)和造血功能异常(无效造血)为主要特征,然而其发生、发展及白血病转化的分子机制尚不明确。MicroRNA(miRNA)是一类重要的非编码小分子RNA,在调控造血干细胞发育进程中起着重要作用,其在MDS的发生发展及白血病转化中的作用也逐渐被认识,以miRNA为分子靶点诊治造血干细胞受损疾患的研究具有广阔的应用前景。  相似文献   

16.
Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized “piwi” refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34+ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis.  相似文献   

17.
Hematopoietic stem cell (HSC) division leads to self-renewal, differentiation, or death of HSCs, and adequate balance of this process results in sustained, lifelong, high-throughput hematopoiesis. Despite their contribution to hematopoietic cell production, the majority of cells within the HSC population are quiescent at any given time. Recent studies have tackled the questions of how often HSCs divide, how divisional history relates to repopulating potential, and how many HSCs contribute to hematopoiesis. Here, we summarize these recent findings on HSC turnover from different experimental systems and discuss hypothetical models for HSC cycling and maintenance in steady-state and upon hematopoietic challenge.  相似文献   

18.
19.

Background

Hematopoietic stem cell (HSC) niche of the BM provides a specialized microenvironment for the regulation of HSCs. The strict control of HSCs by the niche coordinates the balance between the proliferation and the differentiation of HSCs for the homeostasis of the blood system in steady states and during stress hematopoiesis. The osteoblastic and vascular niches are the classically identified constituents of the BM niche.

Scope of review

Recent research broadens our understanding of the BM niche as an assembly of multiple niche cells within the BM. We provide an overview of the HSC niche aiming to delineate the defined and possible niche cell interactions which collectively modulate the HSC integrity.

Major conclusions

Multiple cells in the BM, including osteoblasts, vascular endothelia, perivascular mesenchymal cells and HSC progeny cells, function conjunctively as niche cells to regulate HSCs.

General significance

The study of HSC niche cells and their functions provides insights into stem cell biology and also may be extrapolated into the study of cancer stem cells. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

20.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号