首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine the efficacy of neural stem cell-based suicidal gene therapy in rats bearing human glioma. F3 human neural stem cells (NSCs) were transduced to encode cytosine deaminase (CD) which converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). Intratumoral or intravenous transplantation of F3.CD human NSCs led to marked reduction in tumor burden and significantly prolonged the survival of brain tumor-bearing rats. The systemic administration of 5-FC with direct intratumoral/intravenous transplantation of F3.CD cells had remarkable therapeutic effect in rats with human glioma cells as compared with transplantation of parental F3 cells. There was 74% reduction in tumor volume in rats receiving direct transplantation of F3.CD cells into tumor site, and 67% reduction in tumor volume in rats receiving intravenous injection of F3.CD cells as compared to control animals transplanted with human glioma U373 cells alone. The combination of F3.CD and 5-FC was a highly effective in the glioma rat model. Our observations suggest that genetically engineered NSCs encoding suicide gene CD could provide clinical application of suicide gene therapy for patients with glioma.  相似文献   

2.
Neural stem cells, which are clonogenic cells with multilineage differentiation properties from regions of the fetal brain, cortex and hippocampus, are currently considered as powerful candidates for cell replacement therapy in neurodegenerative disorders, such as Parkinson's disease. A key issue is whether stem cells can survive, migrate and differentiate following transplantation into the adult CNS. Here, enhanced green fluorescent protein plasmid electroporation-transfected neural stem cells from the fetal cortex were grafted into the striatum of a rat model of Parkinson's disease. We found most of the grafted cells could survive in the adult parkinsonian rat brain and migrated towards damaged areas, while they moved randomly in the normal brain. Several grafted cells differentiated into neurons.  相似文献   

3.
Cell therapy plays an important role in multidisciplinary management of the two major forms of central nervous system (CNS) injury, traumatic brain injury and spinal cord injury, which are caused by external physical trauma. Cell therapy for CNS disorders involves the use of cells of neural or non-neural origin to replace, repair, or enhance the function of the damaged nervous system and is usually achieved by transplantation of the cells, which are isolated and may be modified, e.g., by genetic engineering, when it may be referred to as gene therapy. Because the adult brain cells have a limited capacity to migrate to and regenerate at sites of injury, the use of embryonic stem cells that can be differentiated into various cell types as well as the use of neural stem cells has been explored. Preclinical studies and clinical trials are reviewed. Advantages as well as limitations are discussed. Cell therapy is promising for the treatment of CNS injury because it targets multiple mechanisms in a sustained manner. It can provide repair and regeneration of damaged tissues as well as prolonged release of neuroprotective and other therapeutic substances.  相似文献   

4.
Spinal cord and brain injuries usually lead to cavity formation. The transplantation by combining stem cells and tissue engineering scaffolds has the potential to fill the cavities and replace the lost neural cells. Both chitosan and collagen have their unique characteristics. In this study, the effects of chitosan and collagen on the behavior of rat neural stem cells (at the neurosphere level) were tested in vitro in terms of cytotoxicity and supporting ability for stem cell survival, proliferation and differentiation. Under the serum-free condition, both chitosan membranes and collagen gels had low cytotoxicity to neurospheres. That is, cells migrated from neurospheres, and processes extended out from these neurospheres and the differentiated cells. Compared with the above two materials, chitosan-collagen membranes were more suitable for the co-culture with rat neural stem cells, because, except for low cytotoxicity and supporting ability for the cell survival, in this group, a large number of cells were observed to migrate out from neurospheres, and the differentiating percentage from neurospheres into neurons was significantly increased. Further modification of chitosan-collagen membranes may shed light on in vivo nerve regeneration by transplanting neural stem cells.  相似文献   

5.
Radiotherapy often provides the only clinical recourse for those afflicted with primary or metastatic brain tumors. While beneficial, cranial irradiation can induce a progressive and debilitating decline in cognition that may, in part, be caused by the depletion of neural stem cells. Given the increased survival of patients diagnosed with brain cancer, quality of life in terms of cognitive health has become an increasing concern, especially in the absence of any satisfactory long-term treatments.To address this serious health concern we have used stem cell replacement as a strategy to combat radiation-induced cognitive decline. Our model utilizes athymic nude rats subjected to cranial irradiation. The ionizing radiation is delivered as either whole brain or as a highly focused beam to the hippocampus via linear accelerator (LINAC) based stereotaxic radiosurgery. Two days following irradiation, human neural stem cells (hNSCs) were stereotaxically transplanted into the hippocampus. Rats were then assessed for changes in cognition, grafted cell survival and for the expression of differentiation-specific markers 1 and 4-months after irradiation. Our cognitive testing paradigms have demonstrated that animals engrafted with hNSCs exhibit significant improvements in cognitive function. Unbiased stereology reveals significant survival (10-40%) of the engrafted cells at 1 and 4-months after transplantation, dependent on the amount and type of cells grafted. Engrafted cells migrate extensively, differentiate along glial and neuronal lineages, and express a range of immature and mature phenotypic markers.Our data demonstrate direct cognitive benefits derived from engrafted human stem cells, suggesting that this procedure may one day afford a promising strategy for the long-term functional restoration of cognition in individuals subjected to cranial radiotherapy. To promote the dissemination of the critical procedures necessary to replicate and extend our studies, we have provided written and visual documentation of several key steps in our experimental plan, with an emphasis on stereotaxic radiosurgey and transplantation.  相似文献   

6.
从胚胎或成体大鼠脑组织、人胚脑组织均能分离到神经干细胞 ,将它们进行体外原代培养扩增或永生化后植入脑内 ,均能观察到其在脑内的迁移和分化现象。其分化能力主要取决于移植部位的脑内微环境 ,但这种影响作用是相对的。同时 ,体外培养环境如培养时间和细胞融合程度、维甲酸类诱导分化剂处理、NGF转导处理再移植或与嗜铬细胞 (分泌NGF)共移植等 ,也能决定神经干细胞脑内移植后向神经元方向分化的能力。神经干细胞移植为中枢神经系统功能重建和神经再生带来新的希望。  相似文献   

7.

Background

Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors.

Methods and Findings

As proof-of-concept, we selected Herceptin™ (trastuzumab), a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice.

Conclusions

Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer.  相似文献   

8.
One strategy for the use of neural stem cells (NSCs) in treating neurological disorders is as transplantable "biological minipumps", in which genetically engineered neural stem cells serve as sources of secreted therapeutic (neuroprotective or tumoricidal) agents. Neural stem cells are highly mobile within the brain and demonstrate a tropism for various types of central nervous system (CNS) pathology, making them promising candidates for targeted gene delivery vehicles. Although neural stem cells have also been proposed as a potential source of replacement neurons and astrocytes to repopulate injured or degenerating neural circuits, the challenges involved in rebuilding damaged brain architecture are substantial and remain an active area of investigation. In contrast, the use of NSCs as biological minipumps does not rely on neuronal differentiation, axonal targeting, or synaptogenesis. This strategy may be a faster route to cell-based therapy of the CNS and is poised to move into human clinical trials. This review considers two types of neurologic disease that may be suitable targets for this alternative approach to NSC therapy: glial brain tumors and traumatic brain injury. We examine some of the key scientific and technical issues that must be addressed for the successful use of NSCs as minipumps.  相似文献   

9.
The cancer stem cell (CSC) concept, which arose more than a decade ago, proposed that tumor growth is sustained by a subpopulation of highly malignant cancerous cells. These cells, termed CSCs, comprise the top of the tumor cell hierarchy and have been isolated from many leukemias and solid tumors. Recent work has discovered that this hierarchy is embedded within a genetically heterogeneous tumor, in which various related but distinct subclones compete within the tumor mass. Thus, genetically distinct CSCs exist on top of each subclone, revealing a highly complex cellular composition of tumors. The CSC concept has therefore evolved to better model the complex and highly dynamic processes of tumorigenesis, tumor relapse, and metastasis.  相似文献   

10.
The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.  相似文献   

11.
From the time of discovery that among the cord blood mononuclear cell population there are cells capable of changing their fate towards the neural lineage and producing functional neurons and macroglial cells, our attempts have been focused on the understanding of the underlying mechanism of this transition. We have deciphered the first steps of neural stem/progenitor gene induction in aggregating culture of cord blood mononuclear cells, their rapid phenotypic conversion under the influence of neuromorphogenic signals due to mitogen activation and their ability to expand and develop a prototypic, long-living line with neural stem cell properties. Evidence has accumulated that human umbilical cord-derived and neurally committed cells, due to their capacity for self-renewal, multilineage differentiation, plasticity and ability for long-lasting growth in vitro, provide unique material for the cell therapy of a wide spectrum of neurological diseases. The putative regenerating potential of these cord blood-derived neural stem/progenitor cells was evaluated after transplantation in experimental models of brain injury. In spite of initial promising data, the results indicate an urgent need to improve available animal model protocols in order to increase immuno-tolerance toward transplanted human cells.  相似文献   

12.

Background

Glioblastoma multiforme is the most lethal brain tumor with limited therapeutic options. Antigens expressed on the surface of malignant cells are potential targets for antibody-mediated gene/drug delivery.

Principal Findings

In this study, we investigated the ability of genetically modified human mesenchymal stem cells (hMSCs) expressing a single-chain antibody (scFv) on their surface against a tumor specific antigen, EGFRvIII, to enhance the therapy of EGFRvIII expressing glioma cells in vivo. The growth of U87-EGFRvIII was specifically delayed in co-culture with hMSC-scFvEGFRvIII. A significant down-regulation was observed in the expression of pAkt in EGFRvIII expressing glioma cells upon culture with hMSC-scFvEGFRvIII vs. controls as well as in EGFRvIII expressing glioma cells from brain tumors co-injected with hMSC-scFvEGFRvIII in vivo. hMSC expressing scFvEGFRvIII also demonstrated several fold enhanced retention in EGFRvIII expressing flank and intracranial glioma xenografts vs. control hMSCs. The growth of U87-EGFRvIII flank xenografts was inhibited by 50% in the presence of hMSC-scFvEGFRvIII (p<0.05). Moreover, animals co-injected with U87-EGFRvIII and hMSC-scFvEGFRvIII intracranially showed significantly improved survival compared to animals injected with U87-EGFRvIII glioma cells alone or with control hMSCs. This survival was further improved when the same animals received an additional dosage of hMSC-scFvEGFRvIII two weeks after initial tumor implantation. Of note, EGFRvIII expressing brain tumors co-injected with hMSCs had a lower density of CD31 expressing blood vessels in comparison with control tumors, suggesting a possible role in tumor angiogenesis.

Conclusions/Significance

The results presented in this study illustrate that genetically modified MSCs may function as a novel therapeutic vehicle for malignant brain tumors.  相似文献   

13.
The neural stem cells (NSCs) have the ability to self-renew, and to migrate to pathologically altered regions of the central nervous system. Glial cell derived neurotrophic factor (GDNF) could protect dopamine neurons and rescue motor neurons in vivo, which has been proposed as a promising candidate for the treatments of degenerative neurological diseases. In order to combine the advantages of neurotrophic factors and stem cells in clinical therapy, we established the modified hNSCs that has site-specific integration of GDNF gene by using recombinant adeno-associated virus (rAAV) vectors. The hNSCs were co-infected by rAAV2-EGFP-GDNF and rAAV2-SVAV2 which provide integrase to specifically integrate GDNF gene into AAVS1 site. The GDNF-hNSCs maintained their original stem cell characteristics and the ability to differentiate into neurons in vitro. In the animal model, the GDNF-hNSCs were specifically transplanted into CA1 area of hippocampi and could migrate to the dentate gyrus region and differentiate into neuronal cells while maintaining GDNF expression. hNSCs with GDNF gene site-specific integration at AAVS1 by using AAV vectors retained their stemness and effectively expressed GDNF, which indicates the potential of employing transplanted hNPCs for treatment of brain injuries and degenerative neurological diseases.  相似文献   

14.
成人中枢神经系统存在着一定量的神经干细胞,其具有两大关键能力;自我更新和多向分化潜能。缺血性脑卒中是一种由于由脑血流的缺失或减少引起的脑动脉闭塞,进而导致脑组织梗死的脑血管疾病。虽然对于脑损伤的药物治疗已经取得了一定的成果,但目前以干细胞为基础的治疗方法仍成为了研究热点。无论是内源性神经干细胞还是外源性神经干细胞移植均可在脑损伤后向远端损伤区迁移并分化成新的神经细胞,从而在中枢神经系统疾病尤其是脑梗死后进行组织修复和功能恢复。因此在这篇综述中,我们主要探讨不同类型的干细胞对脑梗死介导的脑损伤的应用潜能,对比不同类型干细胞对缺血性脑卒中的治疗优缺点。  相似文献   

15.
Stem cells are totipotent cells of the blastocyst (embryonal stem cells) and multipotent germinative cells of ento-, ecto-, and mesoderm that give rise to all tissues during embryogenesis. The stem cells have high proliferation activity and an unlimited capacity for self-production by symmetrical mitosis. Asymmetrical mitosis of the stem cells generates daughter cells (progenitor cells) with unlimited proliferation potential. During differentiation, the progenitor cells give rise to definitive somatic cells. The stem and progenitor cells are preserved in most tissues of adult organism and provide for the constant replacement of the cells after their physiological death and damage. At the end of last century, stem cells were found in the brain of the adult mouse and rat and later in the brain of other mammals including humans. The subependymal zone of the lateral ventricles is considered the site of stem cells localization; however, there are indications of stem cells origination from ependyma while the subependymal zone serves as a collector of the progenitor cells where these cells divide. The problem of the localization of stem cells in a mature brain has not yet been resolved and is actively discussed. The stem and progenitor cells, as well as neuro- and gliogenesis, are most explored in the hippocampus and olfactory bulb. The progenitor cells migrate to the olfactory bulb from the subependymal zone of the lateral ventricles via a rostral migratory stream formed by the astrocytes, and then they differentiate to neural and glial cells. In the hippocampus, the neurons are formed in the subgranular zone of dentate gyrus. an ongoing neuro- and gliogenesis in all periventricular sections of the brain and spinal cord during the whole animal or human lifespan. These processes proved to be related to the functional condition of CNS, and the de novoformed neural and glial cells proved to be involved in certain brain functions. Stress inhibits the proliferation of the stem cells, while certain brain pathologies (ischemia, injury, or epilepsy) can promote their division. Isolating and cultivating in vitrothe stem progenitor cells yielded their long-living clones, revealed the factors of their directed differentiation, and demonstrated the application of the native and genetically modified stem cells for the intrabrain transplantation of the cell and gene therapy of certain experimental brain pathologies, which offers a promising application of the stem cells for CNS maladies treatment. The aim of this review is to introduce the readers to the state of foreign studies on the brain stem cells by the beginning of 2001.  相似文献   

16.
Neurogenesis in the Adult Mammalian Brain   总被引:1,自引:0,他引:1  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

17.
Neurogenesis in the adult mammalian brain   总被引:2,自引:0,他引:2  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to obtain new results overriding the dogma that neurogenesis is impossible in the adult brain. The present review summarizes the information about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and denate gyrus, neurogenesis appears proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin, and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise very fast to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

18.
The targeted migration of neural stem/progenitor cells (NSPCs) is a prerequisite for the use of stem cell therapy in the treatment of pathologies. This migration is regulated mainly by C-X-C motif chemokine 12 (CXCL12). Therefore, promotion of the migratory responses of grafted cells by upregulating CXCL12 signaling has been proposed as a strategy for improving the efficacy of such cell therapies. However, the effects of this strategy on brain tumors have not yet been examined in vivo. The aim of the present study was thus to elucidate the effects of grafted rat green fluorescent protein (GFP)–labeled NSPCs (GFP-NSPCs) with CXCL12 enhancement on a model of spontaneous rat brain tumor induced by N-ethyl-N-nitrosourea. T2-weighted magnetic resonance imaging was applied to determine the changes in tumor volume and morphology over time. Postmortem histology was performed to confirm the tumor pathology, expression levels of CXCL12 and C-X-C chemokine receptor type 4, and the fate of GFP-NSPCs. The results showed that the tumor volume and hypointense areas of T2-weighted images were both significantly increased in animals treated with combined NSPC transplantation and CXCL12 induction, but not in control animals or in those with tumors that received only one of the treatments. GFP-NSPCs appear to migrate toward tumors with CXCL12 enhancement and differentiate uniquely into a neuronal lineage. These findings suggest that CXCL12 is an effective chemoattractant that facilitates exogenous NSPC migration toward brain tumors and that CXCL12 and NSPC can act synergistically to promote tumor progression with severe hemorrhage.  相似文献   

19.
Amniotic fluid has been recently suggested as an alternative source of mesenchymal stem cells. However, the fate of amniotic fluid-derived mesenchymal stem cells (AF-MSCs) after in vivo transplantation has yet to be determined. In the present study we explored whether human AF-MSCs could survive and migrate following transplantation into the striatum of normal and ischemic rat. We found that the grafted cells could survive and migrate towards multiple brain regions in the normal animals, while they moved towards the injured region in the ischemic rat. Double-immunostaining analyses showed that the implanted human AF-MSCs express markers for immature neurons (Doublecortin) at 10 days, and for astrocytes (GFAP) at 10, 30 and 90 after transplantation. This study provides the first evidence that human amniotic fluid contains cells having the potential to survive and integrate into adult rat brain tissue and, therefore, to function as effective stem cells for therapeutic strategies.  相似文献   

20.
The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号