首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanoma is known as an aggressive tumor which shows an increasing incidence and poor prognosis in the metastatic phase. Hence, it seems that diagnosis and effective management (including early diagnosis, choosing of the effective therapeutic platform, caring, and training of patients for early detection) are major aspects of melanoma therapy. Early detection of melanoma is a key point for melanoma therapy. There are various diagnosis options such as assessing of biopsy, imaging techniques, and biomarkers (i.e., several proteins, polymorphism, and liquid biopsy). Among the various biomarkers, assessing circulating tumor cells, cell-free DNAs, cell-free RNAs, and microRNAs (miRNAs) have emerged as powerful diagnosis tools for melanoma patients. Deregulations of these molecules are associated with melanoma pathogenesis. After detection of melanoma, choosing of effective therapeutic regimen is a key step for recovery of melanoma patients. Several studies indicated that various therapeutic approaches including surgery, immunotherapy, systematic therapy, radiation therapy and antibodies therapy could be used as potential therapeutic candidates for melanoma therapy. Caring for melanoma patients is one of the important components of melanoma therapy. Caring and training for melanoma patients could contribute to better monitoring of patients in response to various therapeutic options. Here, we summarized various diagnosis approaches such as assessing biopsy, imaging techniques, and utilization of various biomarkers (i.e., proteins, CTCs, cfDNAs, and miRNAs) as a diagnostic biomarker for detection and monitoring patients with melanoma. Moreover, we highlighted various therapeutic options and caring aspects in patients with melanoma.  相似文献   

2.
Myocardial regeneration with bone-marrow-derived stem cells   总被引:5,自引:0,他引:5  
Despite significant therapeutic advances, heart failure remains the predominant cause of mortality in the Western world. Ischaemic cardiomyopathy and myocardial infarction are typified by the irreversible loss of cardiac muscle (cardiomyocytes) and vasculature composed of endothelial cells and smooth muscle cells, which are essential for maintaining cardiac integrity and function. The recent identification of adult and embryonic stem cells has triggered attempts to directly repopulate these tissues by stem cell transplantation as a novel therapeutic option. Reports describing provocative and hopeful examples of myocardial regeneration with adult bone-marrow-derived stem and progenitor cells have increased the enthusiasm for the use of these cells, yet many questions remain regarding their therapeutic potential and the mechanisms responsible for the observed therapeutic effects. In this review article we discuss the current preclinical and clinical advances in bone-marrow-derived stem or progenitor cell therapies for regeneration or repair of the ischaemic myocardium and their multiple related mechanisms involved in myocardial repair and regeneration.  相似文献   

3.
Growing cell-based myocardial therapies which could lead to successful myocardial repair attracts medical interest. Even more intriguing is the observation that MSCs appears to be a more potent material among kinds of stem cells for the transplantation, the mechanism for this benefit remains unclear. However, the therapeutic contribution of MSCs to myocardial repair can be caused by multiple factors including: direct differentiation into cardiac tissue including cardiomyocytes, smooth muscle cell, and vascular endothelial cells; secreting a variety of cytokines and growth factors that have paracrine activities; spontaneous cell fusion; and stimulating endogenous repair. In addition, MSCs possess local immunosuppressive properties, and MSCs mobilization is widely used clinically for transplantation. We will discusses the potential mechanisms of MSCs repair for ischemic heart diseases.  相似文献   

4.
BM stem cells and cardiac repair: where do we stand in 2004?   总被引:1,自引:0,他引:1  
Orlic D 《Cytotherapy》2005,7(1):3-15
Adult BM stem cells are being investigated for their potential to regenerate injured tissues by a process referred to as plasticity or transdifferentiation. Although data supporting stem cell plasticity is extensive, a controversy has emerged based on findings that propose cell-cell fusion as a more appropriate interpretation for this phenomenon. A major focus of this controversy is the claim that acutely infarcted myocardium in adult hearts can be regenerated by BM stem cells. Many researchers consider the adult heart to be a post-mitotic organ, whereas others believe that a low level of cardiomyocyte renewal occurs throughout life. If renewal occurs, it may be in response to cardiac stem cell activity or to stem cells that migrate from distant tissues. Post-mortem microscopic analysis of experimentally induced myocardial infarctions in several rodent models suggests that cardiomyocyte renewal is achieved by stem cells that infiltrate the damaged tissue. For a better understanding of the possible involvement of stem cells in myocardial regeneration, it is important to develop appropriate technologies to monitor myocardial repair over time with an emphasis on large animal models. Studies on non-human primate, swine and canine models of acute myocardial infarctions would enable investigators to utilize clinical quality cell-delivery devices, track labeled donor cells after precision transplantation and utilize non-invasive imaging for functional assays over time with clinical accuracy. In addition, if stem cell plasticity is to reach the next level of acceptance, it is important to identify the environmental cues needed for stem cell trafficking and to define the genetic and cellular mechanisms that initiate transdifferentiation. Only then will it be possible to determine if, and to what extent, BM stem cells are involved in myocardial regeneration and to begin to regulate precisely tissue repair.  相似文献   

5.
Lynch syndrome (LS) is the most common form of inherited predisposition to develop cancer mainly in the colon and endometrium but also in other organ sites. Germline mutations in DNA mismatch repair (MMR) gene cause the transmission of the syndrome in an autosomal dominant manner. The management of LS patients is complicated by the large variation in age at cancer diagnosis which requires these patients to be enrolled in surveillance protocol starting as early as in their second decade of life. Several environmental and genetic factors have been proposed to explain this phenotypic heterogeneity, but the molecular mechanisms remain unknown. Although the presence of genetic anticipation in Lynch syndrome has been suspected since 15 years, only recently the phenomenon has been increasingly reported to be present in different cancer genetic syndromes including LS. While the biological basis of earlier cancer onset in successive generations remains poorly known, recent findings point to telomere dynamics as a mechanism significantly contributing to genetic anticipation in Lynch syndrome and in other familial cancers. In this review, we summarize the clinical and molecular features of Lynch syndrome, with a particular focus on the latest studies that have investigated the molecular mechanisms of genetic anticipation.  相似文献   

6.
7.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue‐specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time‐consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC‐based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post‐MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC‐based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI.  相似文献   

8.
Cell therapy for myocardial disease is a rapidly progressive field. However, present strategies of cell transplantation into the infarcted myocardium have limitations from practical points of view. One of the biggest challenges is to achieve a sufficient number of suitable cells. Umbilical cord blood (UCB), an unlimited source of stem/progenitor cells that could be used for transplantation into the injured heart, is readily available. The aim of our review is to describe the potential and prospect of UCB as a new supplier of cells for myocardial repair. The use of UCB stem cells might be of importance to elderly and sick people in whom the availability of autologous stem cells is limited.  相似文献   

9.
Stem cells of the bone marrow, including hematopoietic stem cells (HSC), mesenchymal stem cells (MSC) and hepatic progenitors were reported to give rise to hepatocytes by both transdifferentiation and cellular fusion. Transdifferentiation was observed without liver damage although significant numbers of stem cell derived hepatocytes were not described. Cellular fusion was demonstrated in the presence of a proliferation stimulus in conjunction with impaired intrinsic liver regeneration capacity. Here, we review potential therapeutic applications of stem cell derived hepatocytes depending on how they emerge. Stem cells turning into hepatocytes by transdifferentiation introduce new functioning liver cells into a diseased organ, which can support intrinsic liver regeneration or bridge the time gap until a definitive treatment is available. When cellular fusion is the mechanism behind stem cell plasticity, however, no new cells emerge in the first place, whereas new genetic material is introduced. The fusion cell thereby acquires a selective advantage over resident hepatocytes allowing for extensive proliferation and liver repopulation. Therefore genetic deficiencies might be the predominant target for cell fusion therapies. We conclude that transdifferentiation and cellular fusion might be powerful tools for the therapy of liver diseases in the future and we propose the introduction of artificial cell fusion as well as stem cell differentiation as therapeutic options.  相似文献   

10.
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.  相似文献   

11.
Labeling of adult stem cells for in vivo-application in the human heart   总被引:1,自引:0,他引:1  
Tissue regeneration with human hematopoietic or mesenchymal stem cells has become a fashionable research topic. In cardiology, intracoronary injection of adult stem cells has already been used for the treatment of human myocardial infarction and ischemic cardiomyopathy. The experimental background of such therapies, however, i.e. the potential of adult stem cells to regenerate myocardium through "transdifferentiation" of hematopoietic or mesenchymal stem cells into cardiomyocytes described in animal models, has recently been challenged by other experimental data. Nonetheless, clinical trials are continuing. This may be due to the fact that, in open-labeled pilot trials, a benefit of intracoronary injection of adult stem cells for the treatment of myocardial infarction has been described. As pilot trials may overemphasize the beneficial effects of intracoronary injection of bone marrow stem cells, controlled double-blinded randomised multicenter studies are warranted. Furthermore, a careful characterization of the cells involved in the proposed cardiac repair as well as in vivo-monitoring of such cells following intracoronary injection in humans might help to answer many essential questions linked to this important research topic. The latter requires biocompatible labeling. This review focuses on the technologies available for stem cell labeling and summarizes the arguments and contra-arguments to use these labeling technologies for application in humans.  相似文献   

12.
Morbidity and mortality from cirrhosis is increasing rapidly in the world. Currently, orthotopic liver transplantation is the only definitive therapeutic option. However, its clinical use is limited, because of poor long‐term graft survival, donor organ shortage and high costs associated with the procedure. Stem cell replacement strategies are therefore being investigated as an attractive alternative approach to liver repair and regeneration. In this review we discuss recent preclinical and clinical investigations that explore the therapeutic potential of stem cells in repair of liver injuries. Several types of stem cells. including embryonic stem cells, haematopoietic stem cells and mesenchymal stem cells, can be induced to differentiate into hepatocyte‐like cells by defined culture conditions in vitro. Stem cell transplantation has been shown to significantly improve liver function and increase animal survival in experimentally‐induced liver‐injury models. Moreover, several pilot clinical studies have reported encouraging therapeutic effects in patients treated with stem cells. Although there remain many unresolved issues, the available data support the notion that stem cell technology may lead to the development of effective clinical modalities for human liver diseases.  相似文献   

13.
The field of Regenerative Biology as it applies to Regenerative Medicine is an increasingly expanding area of research with hopes of providing therapeutic treatments for diseases and/or injuries that conventional medicines and even new biologic drug therapies cannot effectively treat. Extensive research in the area of Regenerative Medicine is focused on the development of cells, tissues and organs for the purpose of restoring function through transplantation. The general belief is that replacement, repair and restoration of function is best accomplished by cells, tissues or organs that can perform the appropriate physiologic/metabolic duties better than any mechanical device, recombinant protein therapeutic or chemical compound. Several strategies are currently being investigated and include, cell therapies derived from autologous primary cell isolates, cell therapies derived from established cell lines, cell therapies derived from a variety of stem cells, including bone marrow/mesenchymal stem cells, cord blood stem cells, embryonic stem cells, as well as cells tissues and organs from genetically modified animals. This mini-review is not meant to be exhaustive, but aims to highlight clinical applications for the four areas of research listed above and will address a few key advances and a few of the hurdles yet to be overcome as the technology and science improve the likelihood that Regenerative Medicine will become clinically routine.  相似文献   

14.
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.  相似文献   

15.
The review summarizes literature data on the role of DNA breaks and DNA repair in the differentiation of pluripotent stem cells (PSC) and connective cell lineages. PSC, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), are rapidly dividing cells with highly active DNA damage response (DDR) mechanisms to ensure the stability and integrity of the DNA. In PSCs, the most common DDR mechanism is error-free homologous recombination (HR) that is primarily active during the S phase of the cell cycle, whereas in quiescent, slow-dividing or non-dividing tissue progenitors and terminally differentiated cells, errorprone non-homologous end joining (NHEJ) mechanism of the double-strand break (DSB) repair is dominating. Thus, it seems that reprogramming and differentiation induce DNA strand breaks in stem cells which itself may trigger the differentiation process. Somatic cell reprogramming to iPSCs is preceded by a transient increase of the DSBs induced presumably by the caspase-dependent DNase or reactive oxygen species. In general, pluripotent stem cells possess stronger DNA repair systems compared to differentiated cells. Nonetheless, during a prolonged cell culture propagation, DNA breaks can accumulate due to the DNA polymerase stalling. Consequently, the DNA damage might trigger the differentiation of stem cells or replicative senescence of somatic cells. The differentiation process per se is often accompanied by a decrease in the DNA repair capacity. Thus, the differentiation might be triggered by DNA breaks, alternatively, the breaks can be a consequence of the decay in the DNA repair capacity of differentiated cells.Key words: DNA breaks, DNA repair, differentiation, stem cells, connective tissue  相似文献   

16.
Ischemia causes oxygen deprivation, cell injury and related organ dysfunction. Although ischemic injury may be local, it involves many biochemical changes in different cell types. The ability of stem cells to differentiate into different cell lineages provides the possibility of their use in treating a variety of diseases requiring tissue repair or reconstitution, such as stroke, ischemic retinopathy, myocardial infarction, ischemic disorders of the liver, ischemic renal failure, and ischemic limb dysfunction. Several cell types including embryonic stem cells, various progenitor and stem cells of hematopoietic or mesenchymal origin have been used in attempts to reconstitute injured tissue. Xenologous or autologous stem cells may be administered either through the peripheral vascular system or directly by regional injection. The stem cells are then guided to the infarct site by homing signals. Either by cell differentiation or paracrine effects, stem cells or progenitor cells participate in the reconstruction of a favorable microenvironment resulting in neovascularization and tissue regeneration that eventually improve the physiological function of organs with ischemic damage.  相似文献   

17.
Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.  相似文献   

18.
Heart diseases such as myocardial infarction cause massive loss of cardiomyocytes, but the human heart lacks the innate ability to regenerate. In the adult mammalian heart, a resident progenitor cell population, termed epicardial progenitors, has been identified and reported to stay quiescent under uninjured conditions; however, myocardial infarction induces their proliferation and de novo differentiation into cardiac cells. It is conceivable to develop novel therapeutic approaches for myocardial repair by targeting such expandable sources of cardiac progenitors, thereby giving rise to new muscle and vasculatures. Human pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells can self‐renew and differentiate into the three major cell types of the heart, namely cardiomyocytes, smooth muscle, and endothelial cells. In this review, we describe our current knowledge of the therapeutic potential and challenges associated with the use of pluripotent stem cell and progenitor biology in cell therapy. An emphasis is placed on the contribution of paracrine factors in the growth of myocardium and neovascularization as well as the role of immunogenicity in cell survival and engraftment. (Part C) 96:98–107, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In the present work, we review the properties of some stem cell types, namely embryonic, hematopoietic and mesenchymal stem cells, which present the most significant interest for use in medicine. Stem cells are undifferentiated cells capable of both self-maintenance and differentiation into mature specialized cells. According to their origin, stem cells can be classified as embryonic and somatic ones. The first ones can be indefinitely maintained in culture, and possess the ability to differentiate into all cells of the adult organism. The second ones possess the limited capacity to differentiate and, probably, a limited proliferative potential. For therapeutic use, important but hotly debated is the plasticity of somatic stem cells, i.e. context-dependent differentiation into "non-related" cell types. It is assumed that the differentiation of the majority of stem cell types proceeds according to the principle of stepwise hierarchical maturation through the stage of intermediate rapidly proliferating progenitor cells. The use of stem cells in medicine is mostly at the preclinical stage now. Despite the fact that embryonic stem cells are highly promising as therapeutic agents, a number of circumstances substantially limits their therapeutic use in the near future. At the same time, approaches involving autotransplantation of hematopoietic or mesenchymal stem cells are beginning to be applied successfully in the clinical trials for treatment of limb ischaemia and myocardial infarction. It is clear that despite a large number of problems and unsolved questions, the use of stem cells in medicine promises a dramatic progress in the treatment of many severe diseases.  相似文献   

20.
In search of adult renal stem cells   总被引:5,自引:0,他引:5  
The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号