首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This study evaluated between-session reliability of opto-electronic motion capture to measure trunk posture and three-dimensional ranges of motion (ROM). Nineteen healthy participants aged 24–74 years underwent spine curvature, pelvic tilt and trunk ROM measurements on two separate occasions. Rigid four-marker clusters were attached to the skin overlying seven spinous processes, plus single markers on pelvis landmarks. Rigid body rotations of spine marker clusters were calculated to determine neutral posture and ROM in flexion, extension, total lateral bending (left-right) and total axial rotation (left-right). Segmental spine ROM values were in line with previous reports using opto-electronic motion capture. Intraclass correlation coefficients (ICC) and standard error of measurement (SEM) were calculated as measures of between-session reliability and measurement error, respectively. Retroreflective markers showed fair to excellent between-session reliability to measure thoracic kyphosis, lumbar lordosis, and pelvic tilt (ICC = 0.82, 0.63, and 0.54, respectively). Thoracic and lumbar segments showed highest reliabilities in total axial rotation (ICC = 0.78) and flexion-extension (ICC = 0.77–0.79) ROM, respectively. Pelvic segment showed highest ICC values in flexion (ICC = 0.78) and total axial rotation (ICC = 0.81) trials. Furthermore, it was estimated that four or fewer repeated trials would provide good reliability for key ROM outcomes, including lumbar flexion, thoracic and lumbar lateral bending, and thoracic axial rotation. This demonstration of reliability is a necessary precursor to quantifying spine kinematics in clinical studies, including assessing changes due to clinical treatment or disease progression.  相似文献   

2.
Regulating spinal motion requires proprioceptive feedback. While studies have investigated the sensing of static lumbar postures, few have investigated sensing lumbar movement speed. In this study, proprioceptive contributions to lateral trunk motion were examined during paraspinal muscle vibration. Seventeen healthy subjects performed lateral trunk flexion movements while lying prone with pelvis fixed. A 44.5-Hz vibratory stimulus was applied to the paraspinal muscles at the L3 level. Subjects attempted to match target paces of 9.5, 13.5, and 17.5 deg/s with and without paraspinal muscle vibration. Vibration of the paraspinal musculature was found to result in slower overall lateral flexion. This effect was found to have a greater influence in the difference of directional velocities with vibration applied to the left musculature. These changes reflect the sensitivity of lumbar velocity sense to applied vibration leading to the perception of faster muscle lengthening and ultimately resulting in slower movement velocities. This suggests that muscle spindle organs modulate the ability to sense velocity of motion and are important in the control of dynamic motion of the spine.  相似文献   

3.
Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal “ lateral‐bender ” pelvis from the “ rod‐like ” pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take‐off forces. We compared iliosacral movements and pelvic motor patterns during jumping in the two pelvic types. Pelvic muscle activity patterns, iliosacral anteroposterior (AP) movements and sagittal bending of the pelvis during the take‐off and landing phases were quantified in lateral bender taxa Ascaphus (Leiopelmatidae) and Rhinella (Bufonidae) and the rod‐like Lithobates (Ranidae). All three species exhibit sagittal extension during take‐off, therefore, both pelvic types employ a sagittal hinge. However, trunk elevation occurs significantly earlier in the anuran rod‐like pelvis. Motor patterns confirm that the piriformis muscles depress the urostyle while the longissimus dorsi muscles elevate the trunk during take‐off. However, the coccygeoiliacus muscles also produce anterior translation of the sacrum on the ilia. A new model illustrates how AP translation facilitates trunk extension in the lateral‐bender anurans that have long been thought to have limited sagittal bending. During landing, AP translation patterns are similar because impact forces slide the sacrum from its posterior to anterior limits. Sagittal flexion during landing differs among the three taxa depending on the way the species land. AP translation during landing may dampen impact forces especially in Rhinella in which pelvic function is tuned to forelimb‐landing dynamics. The flexibility of the lateral‐bender pelvis to function in sagittal bending and AP translation helps to explain the retention of this basal configuration in many anurans. The novel function of the rod‐like pelvis may be to increase the rate of trunk elevation relative to faster rates of energy release from the hindlimbs enabling them to jump farther. J. Morphol. 277:1539–1558, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior–posterior translations, medial–lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial–lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior–posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.  相似文献   

5.
Electromyographic activity of the erector spinae was studied in 25 healthy, young individuals during forward bending and then coming back to erect posture. Sudden onset of electrical silence called the flexion-relaxation phenomenon was seen to occur in all at 57% of the maximum hip flexion and at 84% of the maximum vertebral flexion. Abrupt re-commencement of the activity was seen at almost similar flexion angle while coming back to erect position. The experiment was repeated with the buttocks held against the wall so as to prevent the posterior migration of the pelvis and also the hip flexion to some extent. The effect was to produce inhibition of the electrical activity earlier at 75% of maximum vertebral flexion (p<0.001) while reactivation of erector spinae occurred soon after the extension started from the maximum trunk flexion. Eleven male subjects repeated the experimental task holding 22 lb weight in front and then on their back tied around the iliac crest. In both the instances the myo-electrical silence was found to occur at greater vertebral flexion. It is concluded that the passive equilibrium between gravity induced tensile torque and the extension torque of stretched posterior vertebral ligaments is responsible for the flexion-relaxation phenomenon than the stretch receptors.  相似文献   

6.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

7.
Introduction: Chronic low back pain (CLBP) and fear of movement (kinesiophobia) are associated with an overactivation of paravertebral muscles during forward bending. This impairs spine motor control and contributes to pain perpetuation. However, the abdominal muscles activation is engaged too in spine stabilization but its modulation with kinesiophobia remains unknown. Our study tested whether CLBP and kinesiophobia affected the activation pattern of abdominal muscles during trunk flexion/extension. Methods: Surface electromyographical recordings of the internal oblique/transversus abdominis (IO/TrA) and external oblique (EO) muscles were analyzed in 12 people with CLBP and 13 pain-free subjects during low-velocity forward bending back and forth from erected posture. Tampa Scale of Kinesiophobia was also administrated. Results: IO/TrA activation, but not EO, was modulated across the phases of movement in both groups, i.e. maximal at onset of flexion and end of extension, and minimal at full flexion. In CLBP group only, IO/TrA activation was increased near to full trunk flexion and in correlation with kinesiophobia. Conclusions: The phase-dependence of IO/TrA activation during trunk flexion/extension in standing may have a role in spine motor control. The influence of kinesiophobia in CLBP should be further investigated as an important target in CLBP management.  相似文献   

8.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.  相似文献   

9.
Stability of the lumbar spine is an important factor in determining spinal response to sudden loading. Using two different methods, this study evaluated how various trunk load magnitudes and directions affect lumbar spine stability. The first method was a quick release procedure in which effective trunk stiffness and stability were calculated from trunk kinematic response to a resisted-force release. The second method combined trunk muscle EMG data with a biomechanical model to calculate lumbar spine stability. Twelve subjects were tested in trunk flexion, extension, and lateral bending under nine permutations of vertical and horizontal trunk loading. The vertical load values were set at 0, 20, and 40% of the subject's body weight (BW). The horizontal loads were 0, 10, and 20% of BW. Effective spine stability as obtained from quick release experimentation increased significantly (p<0.01) with increased vertical and horizontal loading. It ranged from 785 (S.D.=580) Nm/rad under no-load conditions to 2200 (S.D.=1015) Nm/rad when the maximum horizontal and vertical loads were applied to the trunk simultaneously. Stability of the lumbar spine achieved prior to force release and estimated from the biomechanical model explained approximately 50% of variance in the effective spine stability obtained from quick release trials in extension and lateral bending (0.53相似文献   

10.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

11.
Changes in spinal posture between the erect and flexed positions were calculated using angular measurements from lateral photographs and radiographs of ten adult male subjects. For photographic measurements, the thoracolumbar vertebral column was modelled as either a single segment or as three segments. In the three-segment model, there was a non-significant correlation between the decrease in lumbar concavity and intervertebral motion. In addition, there was a non-significant negative correlation between the increase in thoracic convexity and lumbar motion determined radiographically. In the single-segment model, the decrease in angulation between the thoracolumbar spine and pelvis was a good representation of lumbar spine flexion as determined by the mean lumbar intervertebral angular change. Therefore, modelling the thoracolumbar vertebral column as a single segment allowed better estimation of lumbar intervertebral angular change during flexion than a three-segment model. The results indicate that large range dynamic motion of the lumbar vertebral column can be represented using photographic analysis of the positions of three easily identified anatomical landmarks: the anterior superior iliac spine, posterior superior iliac spine and the spinous process of the first thoracic vertebra.  相似文献   

12.
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.  相似文献   

13.
In this study, the three-dimensional stabilizing capabilities of the AO-Internal Fixator (IF) and the new Universal Spine System (USS) were investigated. Both devices were tested without and with the cross-link system (IF, IFC, USS, USSC). To determine biomechanical characteristics, a human thoracolumbar spine instability model with resection of the vertebral body Th12 was created. The vertebral body was replaced by a spacer and transpedicular posterior stabilization was performed from Th11 to L1. All devices reduced the range of motion (ROM) significantly compared to the values of the intact specimen. In flexion the IFC showed the highest reduction of ROM (85% of intact), followed by the USSC, USS and IF (79% of intact). In extension the ROM was restored again most by the IFC (52% of intact), followed by the USSC, IF and USS (44% of intact). In lateral bending stability was provided by the USSC (right 78% and left 81% of intact), followed in right lateral bending by the IF, IFC and USS and in left lateral bending by the USS, IF and IFC. In axial rotation the ROM was reduced primary by the IFC (right 51% and left 46% of intact), followed in right axial rotation by the USS, USSC and IF, in left axial rotation by the USSC, USS and IF. Additional stability by crosslinking has been provided in the IF and the USS in flexion and extension, in the USS in lateral bending and in the IF in axial rotation nonsignificantly. The neutral zone (NZ) was reduced by posterior instrumentation in flexion/extension and right/left lateral bending significantly. In axial rotation only the USSC decreased the NZ below intact levels. The study showed no statistical significant differences in the stabilizing capabilities of the USS compared to the IF. For both implants the cross-link system increased stability in the chosen instability model insignificantly only.  相似文献   

14.
The small didelphid cmarsupial, Monodelphis domestica, uses a lateral sequence walk during slow treadmill locomotion and gradually shifts to a trot as speed increases. At higher speeds it changes abruptly to a half-bound. Cinematographic records suggest significant lateral bending but no sagittal bending of the trunk during the slow walk and a reduced amount of lateral bending during the fast walk. There is slight lteral, but no sagittal, bending during the trot. Sagittal bending is obvious during the half-bound, but no lateral bending is evident. Cineradiography confirms that the vertebral column of the trunk bends laterally during the slow walk. Bending occurs throughout the trunk region, but seems to be most pronounced in the anterior lumbar region. Associated with this bending of the trunk is substantial rotation of the pelvic girdle in the plane of yaw. Pelvic rotation is synchronized with the locomotor cycle of hindlimbs. Each side of the pelvis rotates forward during the recovery phase of the ipsilateral hindlimb and backward during the contact phase of this limb. Information on locomotor trunk movements in other limbed tetrapods is limited. The pattern of trunk bending found in Monodelphis, however, is consistent with that reported in the placental mammal Felis catus and in some lepidosaurian reptiles. This suggests that sagittal bending did not replace lateral bending during the evolution of mammals, as is sometimes suggested. Rather, bending in the vertical plane seems to have been added to lateral bleeding when the ancestors of extant mammals acquired galloping and bounding capabilities.  相似文献   

15.
This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.  相似文献   

16.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending.  相似文献   

17.
Inappropriate lordotic angle of lumbar fusion cage could be associated with cage damage or subsidence. The biomechanical influence of cage lordotic angle on lumbar spine has not been fully investigated. Four surgical finite element models were constructed by inserting cages with various lordotic angles at L3-L4 disc space. The four motion modes were simulated. The range of motion (ROM) decreased with increased lordotic angle of cage in flexion, extension, and rotation, whereas it was not substantially changed in bending. The maximum stress in cage decreased with increased lordotic angle of cage in all motion modes. The maximum stress in endplate at surgical level increased with increased lordotic angle of cage in flexion and rotation, whereas it was not substantially changed in extension and bending. The facet joint force (FJF) was much smaller than that for the intact conditions in extension, bending, and rotation, while it was not substantially changed in flexion. In conclusion, the ROM, stresses in the cage and endplate at surgical level are sensitive to the lordotic angle of cage. The increased cage lordotic angle may provide better stability and reduce the risk of cage damage, whereas it may increase the risk of subsidence in flexion and rotation.  相似文献   

18.
Newer designs of total knee arthroplasty (TKA), through the use of added degrees of constraint, attempt to provide a "guided motion" to restore more normal and predictable kinematics. Two such design philosophies are the posterior stabilised (PS) using a cam-post and the medial pivot (MP) concepts. Knee kinematics of 12 patients with a PS TKA, 13 subjects with a MP TKA and 10 normal subjects were compared. For kinematic assessment, patients underwent fluoroscopic assessment of the knee during a step-up exercise and deep knee bend. Fluoroscopic images were corrected for distortion and assessed using 3D model fitting to determine relative 3D motion, and a 2D method to measure the patellar tendon angle (PTA) as function of knee flexion. For the PS design the cam-post mechanism engaged between 70 degrees and 100 degrees flexion. Between extension and 50 degrees there was forward motion of the contact points. Beyond 60 degrees both condyles rolled moved posteriorly. The majority of the external rotation of the femur occurred between 50 degrees and 80 degrees . The PTA was lower than normal in extension and higher than normal in flexion. The MP exhibited no anterior movement throughout the rage of motion. The medial condyle moved minimally. The lateral contact point moved posteriorly from extension to flexion. The femur rotated externally throughout the range of flexion analysed. The PTA was similar to normal from extension to mid flexion and then higher than normal beyond to high flexion. The PS design fails to fully restrain paradoxical anterior movement and although the cam engages, it does not contribute significantly to overall rollback. The MP knee does not show significant anterior movement, the medial pivot concept appears to achieve near normal kinematics from extension to 50 degrees of knee flexion. However, the results show that at high flexion this design does not achieve normal knee kinematics.  相似文献   

19.
In brachiating gibbons, it is thought that there is little movement in the hindlimb joints and that lateral body movement is quite limited. These hypotheses are based on naked‐eye observations, and no quantitative motion analyses of the hindlimbs have been reported. This study quantitatively describes the three‐dimensional movements of the lower trunk and distal thigh during continuous‐contact brachiation in a white‐handed gibbon (Hylobates lar) to evaluate the roles of the trunk and hindlimb. The results revealed that the lower trunk moved both laterally and vertically. The lateral movement of the lower trunk resulted from the lateral inclination of the trunk by gravity. The vertical movement of the trunk was converted into forward velocity, indicating an exchange between potential and kinetic energy. We also observed flexion and extension of the hip, although the excursion was within a small range. In addition, the lateral movement of the hindlimb in thedirection opposite to that of trunk movement helped to reduce the lateral sway of the body. These results suggest that during continuous‐contact brachiation a gibbon uses hip flexion and extension motions to increase the kinetic energy in the swing. In addition, fine motions of the hip may restrict the lateral sway of the center of body mass. Am J Phys Anthropol 142:650–654, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号