首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Golly  P Hlavica    J Wolf 《The Biochemical journal》1984,224(2):415-421
Irradiation with u.v. light of aerobic aqueous media containing both rabbit liver microsomal fraction and 4-chloroaniline results in N-oxidation of the arylamine. The reaction is severely blocked by exhaustive extraction with organic solvents of the microsomal membranes to remove lipids. Further, scavengers of OH. and O2.-impair the photochemical process. These findings suggest that the observed phenomenon may be closely associated with light-induced lipid peroxidation. Indeed, N-oxidation of 4-chloroaniline is fully preserved when either phospholipid liposomes or dispersed linoleic acid substitute for intact microsomal fraction. Co-oxidation of the amine substrate occurs during iron/ascorbate-promoted lipid peroxidation also, but H2O2 or free OH. radicals do not appear to be involved. Cumene hydroperoxide-sustained rabbit liver microsomal turnover of the amine generates N-oxy product via O2-dependent and -independent pathways; propagation of lipid peroxidation is presumed to govern the former route. Lipid hydroperoxides, either exogenously added to rabbit liver microsomal suspensions or enzymically formed from arachidonic acid in ram seminal-vesicle microsomal preparations, support N-oxidation of 4-chloroaniline. The significance, in arylamine activation, of lipid peroxidation in certain extrahepatic tissues exhibiting but low mono-oxygenase activity is discussed.  相似文献   

2.
Placental aldose reductase (EC 1.1.1.21) was incubated with glucose in the presence of [4A-2H] NADPH prepared in the oxidation of [2-2H] isocitrate by isocitrate dehydrogenase (EC 1.1.1.42) or [4B-2H] NADPH prepared in the oxidation of [1-2H] glucose-6-phosphate dehydrogenase (EC 1.1.1.49). The sorbitol formed from [4A-2H] NADPH contained deuterium and from [4B-2H] NADPH it did not. Therefore, aldose reductase in an A-type enzyme.  相似文献   

3.
The d-glucuronate product of myo-inositol oxygenase (EC 1.13.99.1) is efficiently reduced by NADPH in the presence of either purified d-glucuronate reductase (EC 1.1.1.19), or reductase that is part of a protein aggregate that also contains the oxygenase. This occurs despite the fact that the maximum concentration of d-glucuronate that could be formed by the oxygenase under the conditions used for the coupled enzyme experiments is 7 μM, and 10 μM externally supplied d-glucuronate (Km = 7.6 mM) does not support any detectable NADPH oxidation under the reaction conditions. The most likely explanation for the results is that the uncyclized aldehyde form of d-glucuronate is the product of the oxygenase reaction, and that it diffuses into solution and is captured by the reductase before it cyclizes to the more stable but less reactive hemiacetal form.  相似文献   

4.
The incubation of 4-chloroaniline with chloroperoxidase and H2O2 resulted in a rapid formation of 4-chloronitrosobenzene. This enzymic oxidation displayed a pH optimum at 4.4 with a Km of 8.1x10(-4)M and catalytic-centre activity of 312. The initial rate of the reaction was strongly affected by the presence of halide ions. 4-Chlorophenylhydroxylamine was even more rapidly converted into the nitroso compound. A reaction mechanism is proposed on the basis of currently accepted theory for the catalytic action of chloroperoxidae. A noteworthy aspect of this new reaction is the difference in the products previously reported for the action of classical peroxidases on anilines and the single nitroso product resulting from chloroperoxidase oxidation.  相似文献   

5.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

6.
The primary reaction product of chloroplast ascorbate peroxidaseactivity was shown to be monodehydroascorbate radical (MDA).MDA reductase (EC 1.6.5.4 [EC] ) was localized in spinach chloroplaststroma. The MDA reductase activity of spinach chloroplasts,using NAD(P)H as electron donor, could account for the regenerationof ascorbate from MDA produced by ascorbate peroxidase activity.In the absence of MDA reductase, MDA disproportionated to ascorbate(AsA) and dehydroascorbate (DHA). The DHA was reduced to AsAby DHA reductase (EC 1.8.5.1 [EC] ) in chloroplasts. Both NADH andNADPH served as the electron donor of partially purified MDAreductase from spinach leaves. (Received September 24, 1983; Accepted January 23, 1984)  相似文献   

7.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

8.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

9.
The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH(2)) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH(2) but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin.  相似文献   

10.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

11.
A previously reported stimulation of brain 5-methyltetrahydrofolate (5-MeH4-folate) N-methyltransferase by FAD and methylcobalamin (MeB12 is attributed to their roles as nonspecific electron acceptors. Evidence is presented that the catalyst involved is not an aromatic alkylamine methyltransferase, but the widely distributed enzyme, 5,10-methyleneH4-folate reductase. In the presence of an electron acceptor it catalyzes the oxidation of [5-14C]MeH4-folate to [5,10-14C]methyleneH4-folate which equilibrates to yield dimedone reactive H14CHO. The material being measured when incubation systems containing β-phenylethylamine or tryptamine are extracted with tolueneisoamyl alcohol is a condensation product of the H14CHO and the aromatic alkylamine. The aromatic alkylamine is not a co-substrate in the enzymic oxidation mechanism. It is required to react nonenzymically with reductase formed H14CHO and render it extractable. Our failure and that recently of others to detect significant N-methylation using [5-14C]MeH4-folate as a Me group donor make the existence of a folate-biogenic amine methyltransferase seem highly improbable.  相似文献   

12.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

13.
NADH could support the lipid peroxidation of rat liver microsomes in the presence of ferric ions chelated by ADP(ADP-Fe). The reaction had a broad pH optimum (pH 5.8--7.4) and was more active in the acidic pH range. Antibodies to NADH-cytochrome b5 reductase [EC 1.6.2.2] and cytochrome b5 inhibited NADH-dependent lipid peroxidation in the presence of ADP-Fe, whereas the antibody against NADPH-cytochrome c reductase [EC 1.6.2.4] showed no inhibition. These oberservations suggest that the electron from NADH was supplied to the lipid peroxidation reaction via NADH-cytochrome b5 reductase and cytochrome b5. On the other hand, NADPH-supported lipid peroxidation was strongly inhibited by the antibody against NADPH-cytochrome c reductase, confirming the participation of this this flavoprotein in the NADPH-dependent reaction. In the presence of both ADP-Fe and ferric ions chelated by EDTA(EDTA-Fe), NADH-dependent lipid peroxidation was highly stimulated up to the level of the NADPH-dependent reaction. In this case, the antibody against cytochrome b5 could not inhibit the reaction, while the antibody against NADH-cytochrome b5 reductase did inhibit it, suggesting the direct transfer of electrons from NADH-cytochrome b5 reductase to EDTA-Fe complex.  相似文献   

14.
We have developed a rapid and sensitive fluorimetric method, based on the formation of a fluorescent product from nitrosation of 2,3-diaminonaphthalene, for measuring the ability of bacteria to catalyze nitrosation of amines. We have shown in Escherichia coli that nitrosation can be induced under anaerobic conditions by nitrite and nitrate, that formate is the most efficient electron donor for this reaction, and that nitrosation may be catalyzed by nitrate reductase (EC 1.7.99.4). The narG mutants defective in nitrate reductase do not catalyze nitrosation, and the fnr gene is essential for nitrosation. Induction by nitrite or nitrate of nitrosation, N2O production, and nitrate reductase activity all require the narL gene.  相似文献   

15.
16.
Oxidative modification of quercetin by hemeproteins   总被引:2,自引:0,他引:2  
The ability of a number of hemeproteins to oxidize the flavonoid quercetin has been shown. It was found that quercetin undergoes chemical modification in the presence of cytochrome c, myoglobin, and hemoglobin but not cytochrome b(5). In the range of investigated proteins the most effective oxidant appears to be cytochrome c. Chromatographic analysis of the reaction mixture revealed a number of quercetin oxidation products. The main oxidation product was purified and characterized by means of LC-MS and NMR analyses. It has a dimeric structure similar to the product of quercetin oxidation by horseradish peroxidase and is formed during radical-driven reactions. Our results indicate that a number of hemeproteins can react and modify biologically active flavonoids. However, these reactions might also lead to the generation of active species with deleterious consequences for the cellular macromolecules.  相似文献   

17.
Glutathione reductase from S. cerevisiae (EC 1.6.4.2) catalyzes the NADPH oxidation by glutathione in accordance with a "ping-pong" scheme. The catalytic constant kcat) is 240 s-1 (pH 7.0, 25 degrees C); kcat for the diaphorase reaction is 4-5 s-1. The enzyme activity does not change markedly at pH 5.5-8.0. At pH less than or equal to 7.0, NADP+ acts as a competitive inhibitor towards NADPH and as a noncompetitive inhibitor towards glutathione. NADP+ increases the diaphorase activity of the enzyme. The maximal activity is observed, when the NADP+/NADPH ratio exceeds 100. At pH 8.0, NADP+ acts as a mixed type inhibitor during the reduction of glutathione. High concentrations of NADP+ also inhibit the diaphorase activity due to the reoxidation of the reduced enzyme by NADP+ at pH 8.0. The redox potential of glutathione reductase calculated from the inhibition data is--306 mV (pH 8.0). Glutathione reductase reduces quinoidal compounds in an one-electron way. The hyperbolic dependence of the logarithm of the oxidation constant on the one electron reduction potential of quinone is observed. It is assumed that quinones oxidize the equilibtium fraction of the two-electron reduced enzyme containing reduced FAD.  相似文献   

18.
Recent evidence suggests that the reaction between nitrite and deoxygenated hemoglobin provides a mechanism by which nitric oxide is synthesized in vivo. This reaction has been previously defined to follow second order kinetics, although variable product stoichiometry has been reported. In this study we have re-examined this reaction and found that under fully deoxygenated conditions the product stoichiometry is 1:1 (methemoglobin:nitrosylhemoglobin), and unexpectedly, the kinetics deviate substantially from a simple second order reaction and exhibit a sigmoidal profile. The kinetics of this reaction are consistent with an increase in reaction rate elicited by heme oxidation and iron-nitrosylation. In addition, conditions that favor the "R" conformation show an increased rate over conditions that favor the "T" conformation. The reactivity of nitrite with heme is clearly more complex than has been previously realized and is dependent upon the conformational state of the hemoglobin tetramer, suggesting that the nitrite reductase activity of hemoglobin is under allosteric control.  相似文献   

19.
The reactions of human hemoglobin with p-nitro- and p-chlorobenzenediazonium tetrafluoroborates in the presence and absence of molecular oxygen have been investigated in kinetic detail. The oxidation of iron(II) occurs with first order rate dependence on both the hemoglobin and diazonium salt concentrations, but inverse first order dependence on the concentration of molecular oxygen characterizes reactions performed in the presence of O2. In the absence of O2, nitrobenzene is the only product observed from hemoglobin oxidation by p-NO2C6H4N2+BF4?, and a 1:1 stoichiometry exists between nitrobenzene produced and Fe(II) oxidized. In the presence of O2, p-nitrophenol is the dominant product, but product yield is dependent on the ratio of reactants. Electron transfer to the diazonium salt rather than its corresponding diazohydroxide or diazoate is inferred from the relative absence of pH dependence on the rate of oxidation. The composite results are consistent with a mechanism for hemoglobin oxidation that requires molecular oxygen dissociation from oxyhemoglobin prior to oxidation by the diazonium salt. Implications of this investigation for the mechanism of arylhydrazine reactions with hemoglobin are discussed.  相似文献   

20.
The present study confirms that cytochrome P-450 can act as a catalyst in the cumene hydroperoxide-supported N-oxidation of 4-chloroaniline. Analogous to the NADPH/O2-driven N-oxidation process, product dissociation is likely to limit the overall rate of cytochrome P-450 cycling also in the peroxidatic pathway. The oxy complexes involved in either metabolic route differ with respect to stability, spectral properties and need for thiolate-mediated resonance stabilization. With the organic hydroperoxide, the metabolic profile is shifted from the preponderant production of N-(4-chlorophenyl)hydroxylamine to the formation of 1-chloro-4-nitrobenzene. This finding suggests that the peroxide-sustained N-oxidation mechanism differs in several ways from that functional in the NADPH/O2-dependent oxenoid reaction. Thus one-electron oxidation, triggered by homolytic cleavage of the oxygen donor, is proposed as the mechanism of peroxidatic transformation of 4-chloroaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号