首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of inhibition of cholesterol synthesis by a hypocholesterolaemic drug (AY-9944) was studied in rat brain during development. 2. At 2 weeks after administration of AY-9944 to young rats 7-dehydrocholesterol accounted for half the total sterol of myelin and other subcellular components. 3. At 4 weeks after injection of the drug 7-dehydrocholesterol had disappeared whereas the cholesterol content of myelin had increased by an equivalent amount. Our studies show that purified myelin has low 7-dehydrocholesterol reductase activity and suggest that 7-dehydrocholesterol is largely converted into cholesterol outside the myelin sheath. 4. Resultant cholesterol may be re-incorporated into myelin by an exchange process. 5. The metabolism of sterols in developing brain is discussed.  相似文献   

2.
THE EFFECT OF HYPOCHOLESTEREMIC AGENTS ON MYELINOGENESIS   总被引:4,自引:1,他引:3  
Abstract— Three drugs known to inhibit biosynthesis of cholesterol, Clofibrate, 20, 25-diazacholesterol and AY-9944 were administered by stomach intubation to suckling rats. At weaning the rats were killed and subcellular fractions, including myelin, were prepared from the brains and spinal cords and analysed for sterol content. Central nervous tissue fractions from Clofibrate-treated rats showed some decrease in total sterols, but the sterol species were qualitatively normal. AY-9944 given to rats caused high amounts of 7-dehydro-cholesterol to accumulate in all brain and spinal cord fractions with the highest amounts (32–38 percent of total sterols) in myelin. In diazasterol-treated rats desmosterol reached 48 per cent of the sterols of myelin. A group of rats was allowed to survive after the final drug intake (21 days) and their brain and spinal cord sterol content followed up to 60 days. At 30 days the proportion of dehydrocholesterol or desmosterol comprised over half the total myelin sterol. By 60 days of age the 7-dehydrocholesterol had almost completely disappeared from all fractions while substantial amounts of desmosterol were retained in myelin. Myelination was retarded by treatment with AY-9944 and 20, 25-diazasterol, possibly by the limited amount of sterols available. The metabolism of the abnormal myelin constituents in drug-treated animals is discussed in relation to the molecular structure of the myelin membrane.  相似文献   

3.
1. Changes produced by a cholesterol-biosynthesis inhibitor, trans-1,4-bis-(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride (AY-9944), in the total fatty acids in the liver and brain, and in phospholipids in the serum, liver, heart, brain and lungs from male rats, have been studied. 2. Treatment with AY-9944 produced the following changes in the fatty acid composition: (a) a marked decrease in the percentage of linoleic acid and an increase in oleic acid in the total fatty acids in the liver; (b) in the serum, an overall decrease in the percentage of linoleic acid in neutral lipids and phospholipids; (c) an increased content of linoleic acid in the beta-acyl chain of phosphatidylcholines in the liver and in sphingomyelins in the brain and lungs; (d) an increased content of palmitic acid and oleic acid in the beta-acyl chain of phosphatidylcholine in the liver, heart and lungs; (e) an increased content of phosphatidylcholines and sphingomyelins, together with an increased percentage of saturated fatty acids in these phosphatides in the lungs. 3. Changes in the phosphatides and the production of foam cells in the lungs suggest that AY-9944 may be of use in the study of the alveolar membrane.  相似文献   

4.
AY-9944 (AY) exacerbates chronic recurrent seizures in rats that are analogous to atypical absence epilepsy in humans. The mechanism by which AY affects the slow spike-and-wave discharges associated with these seizures is not known, but is thought to involve inhibition of cholesterol synthesis. We tested the hypothesis that seizures seen with AY are due to significant reduction in brain cholesterol and/or elevated brain 7-dehydrocholesterol by assessing whether three other cholesterol synthesis inhibitors mimic AY seizures in rats. Effects of AY on brain sterols and spike-and-wave discharge duration were compared with those of two other late-stage cholesterol inhibitors [BM 15.766 (BM) and U18666A (UA)] and to an HMG-CoA reductase (early-stage cholesterol) inhibitor, lovastatin. With BM or UA, prolongation of seizure duration and brain sterol changes was similar to that caused by AY. AY effects on both brain sterols and seizure duration were dose-related. Lovastatin, with or without concurrent AY, mimicked AY seizures but reduced brain cholesterol by <10% and did not significantly change brain 7-dehydrocholesterol. Either lovastatin has a different mechanism of action than these late-stage cholesterol inhibitors or the brain sterol changes are not directly responsible for seizures in this model.  相似文献   

5.
Smith-Lemli-Opitz syndrome (SLOS) is a recessive disease typified by 7-dehydrocholesterol (7DHC) accumulation and depletion of cholesterol. Because cholesterol is a primary component of detergent-resistant membrane domains ("rafts"), we examined the compatibility of 7DHC with raft formation. Liposomes containing bovine brain phosphatidylcholine, sphingomyelin, cerebrosides, and either cholesterol, 7DHC, or coprostanol (the latter being incompatible with raft formation) were prepared. 7DHC was indistinguishable from cholesterol in its ability to become incorporated into membrane rafts, as judged by physical and chemical criteria, whereas coprostanol did not form rafts. The in vivo compatibility of 7DHC with raft formation was evaluated in brains of rats treated with trans-1,4-bis(2-dichlorobenzylamino-ethyl)cyclohexane dihydrochloride (AY9944), which mimics the SLOS biochemical defect. 7DHC/cholesterol ratios in rafts and whole brains from AY9944-treated rats were similar, indicating comparable efficiency of 7DHC and cholesterol incorporation into brain rafts. In contrast, dolichol (a nonsterol isoprenoid incompatible with raft formation) was greatly depleted in brain rafts relative to whole brain. Although brain raft fractions prepared from AY9944-treated and control rats yielded similar sterol-protein ratios, their gel electrophoresis profiles exhibited multiple differences, suggesting that altered raft sterol composition perturbs raft protein content. These results are discussed in the context of the SLOS phenotype, particularly with regard to the associated central nervous system defects.  相似文献   

6.
7.
Treatment of pregnant rats with AY-9944, a drug interfering with the last steps of cholesterol biosynthesis, accumulated cholesterol precursors in brain and liver of newborn animals. Different sterol profiles were found in these organs. Along with cholesterol and cholesta-5,7-dien-3β -ol, present in both tissues, liver was found to contain a hitherto unreported sterol, absent in brain. The structure of cholesta-5,8-dien-3β -ol was attributed to this compound by mass spectrometric, 1H, and 13C NMR analysis.  相似文献   

8.
Low cholesterol and high 7-dehydrocholesterol (7DHC) levels are associated with a blockade of Delta7-reductase in the Smith-Lemli-Opitz syndrome (SLOS) and in the animals treated with the inhibitor AY9944. The impact of the cholesterol deficit and of the accumulation of 7DHC on the embryo were investigated in AY9944-treated pregnant rats receiving an enriched cholesterol or 7DHC diet. Sterol profiling was performed under the various nutritional conditions. AY9944 caused a severe decrease in the maternal and embryo cholesterol. The deficit in the embryo was sustained by the embryonic uptake of the inhibitor. A cholesterol-rich diet was efficient in restoring the maternal and embryonic cholesterol and phenotype but a 7DHC-rich diet did not modify the sterol status compared with dams treated with only AY9944. The offspring phenotype remained deleterious whether or not the dams received 7DHC-rich diet. Over 80% of the 7DHC was absorbed, as was cholesterol, which was not quantitatively influenced by AY9944. When cholesterol and 7DHC were simultaneously administered, a competition for intestinal absorption enhanced the lowering cholesterol effect of AY9944.Whether or not the dams received a 7DHC dietary supplement, the offspring's phenotype became normal when the diet was supplemented with cholesterol. Under conditions in which the ratio of cholesterol/7DHC is substantially varied, the normal development of embryos can be achieved as long as the cholesterol is sufficient. The phenotype is reversed in vivo by cholesterol which contrasts with the irreversible effects manifested in vitro by oxidized 7DHC by-products.  相似文献   

9.
The standard in vivo method to determine rates of brain cholesterol synthesis involves systemic injection of (3)H(2)O and measurement of incorporated radioactivity in sterols. Herein, we describe an alternative method ("enzyme blockade") that obviates the use of radioactivity. The method relies on the ability of AY9944, a potent and relatively selective inhibitor of cholesterol synthesis, to cause the time-dependent accumulation of 7-dehydrocholesterol (DHC), a cholesterol precursor detected with sensitivity and specificity by reverse-phase HPLC-coupled spectrophotometry at 282 nm. To validate the method, adult AY9944-treated and control mice were injected with [(3)H]acetate. After 24 h, most of the radioactivity in brain sterols from treated mice accumulated in DHC, without significantly perturbing overall sterol pathway activity, compared with controls (where cholesterol was the dominant radiolabeled sterol, with no label found in DHC). When adult mice were treated continuously with AY9944, the time-dependent accumulation of DHC in brain was linear (after approximately 8 h) for 3 days. The rate of brain cholesterol synthesis determined by this method ( approximately 30 microg/g/day) closely agrees with that determined by the radioactive method. We also determined the cholesterol synthesis rate in different regions of adult mouse brain, with frontal cortex having the highest rate and cerebellum having the lowest rate.  相似文献   

10.
7-Dehydrocholesterol accumulates in fetuses affected by the Smith-Lemli-Opitz syndrome as a result of a deficit in the ultimate step of cholesterol synthesis catalyzed by Delta7 reductase. Rat embryos explanted at gestation day 10 and cultured for 48 h in the presence of the Delta7 reductase inhibitor AY 9944 were used as a model to discriminate between the beneficial effect of supplementation with cholesterol and the deleterious effect of supplementation with 7-dehydrocholesterol. Cholesterol supplementation in the form of mixed cholesterol/lecithin liposomes added to serum serving as the culture medium restores the growth of embryos which is markedly decreased in the presence of the inhibitor. 7-Dehydrocholesterol under identical conditions does not restore growth and impairs the beneficial effect of cholesterol added simultaneously. UV-photooxidation of 7-dehydrocholesterol-supplemented culture medium enhances its embryotoxicity, which suggests uptake by the embryo of toxic by-products formed from 7-dehydrocholesterol. By contrast photooxidation of cholesterol-supplemented culture medium does not induce embryotoxicity. alpha-Tocopherol reduces the toxicity of photooxidized 7-dehydrocholesterol supplementing the culture medium. We conclude that 7-dehydrocholesterol does not fulfill the cholesterol requirement of the developing embryos and exerts an additional embryotoxic effect probably via oxidized by-products. This could explain the antenatal growth retardation of SLOS by a blockage of the maternal compensatory cholesterol influx.  相似文献   

11.
1. The compound trans-1,4 bis-(2-dichlorobenzylaminomethyl)cyclohexane dihydrochloride (AY9944) blocks cholesterol synthesis at a late stage. This leads to a decrease in cholesterol and accumulation of cholesta-5,7-diene-3-beta-ol (7-dehydrocholesterol) in tissues and plasma. 2. The effect of AY9944 on bile salt synthesis in rat liver was studied. The synthesis of conjugated cholic and chenodeoxycholic acids was measured in hepatocytes isolated from rats 2 h, 24 h and 48 h after administration of a single oral dose of AY9944. Production of the two bile salts was inhibited by 70-80% in hepatocytes from AY9944-treated as compared to untreated animals. 3. When AY9944 was added to the incubation medium in vitro of hepatocytes prepared from untreated rats the synthesis of conjugated cholic and chenodeoxycholic acids was not inhibited during the first hour of incubation, probably because of the presence of endogenous cholesterol. However when hepatocytes from untreated rats were incubated with AY9944 for periods of 2 h or longer, bile salt production was decreased markedly. 4. Bile salt synthesis is stimulated when rats are subjected to total biliary drainage for 24 h. The effect of AY9944 on this stimulation was studied. The content of conjugated cholic and chenodeoxycholic acid in the bile was measured as an indicator of bile salt synthesis. 5. In control animals the rate of secretion of biliary bile salts began to increase after about 24 h of total biliary drainage and reached a maximum after approximately 36 h. A single oral dose of AY9944 given 2 h after the start of total biliary drainage delayed and reduced this response. 6. The results show that inhibition of cholesterol synthesis by AY9944 resulting in the replacement of cholesterol by 7-dehydrocholesterol decreases but does not completely prevent bile salt synthesis.  相似文献   

12.
Wassif CA  Yu J  Cui J  Porter FD  Javitt NB 《Steroids》2003,68(6):497-502
Smith-Lemli-Opitz syndrome (SLOS) is attributable to mutations in the gene coding for 7-dehydrocholesterol reductase. Low to absent enzyme activity accounts for the accumulation of both 7-dehydrocholesterol and 8-dehydrocholesterol in plasma and other tissues. Since oxysterols can participate in the regulation of cholesterol homeostasis, we examined the possibility that they are formed from these dehydrocholesterol intermediates. In patients with SLOS, we found serum levels of 27-hydroxy-7-dehydrocholesterol ranging from 0.1 to 0.25micro M and evidence for circulating levels of 27-hydroxy-8-dehydrocholesterol (0.04-0.51 micro M). Picomolar quantities of 27-hydroxy-7-dehydrocholesterol were identified in normal individuals. Biologic activities of 27-hydroxy-7-dehydrocholesterol were found to include inhibition of sterol synthesis and the activation of nuclear receptor LXRalpha but not that of LXRbeta. These activities occurred at concentrations found in plasma and presumably at those existing in tissues. Thus, patients with SLOS have increased levels of metabolites derived from intermediates in cholesterol synthesis that are biologically active and may contribute to the regulation of cholesterol synthesis in vivo.  相似文献   

13.
Treatment of Sprague-Dawley rats with AY9944, an inhibitor of 3β-hydroxysterol-Δ(7)-reductase (Dhcr7), leads to elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in all biological tissues, mimicking the key biochemical hallmark of Smith-Lemli-Opitz syndrome (SLOS). Fourteen 7-DHC-derived oxysterols previously have been identified as products of free radical oxidation in vitro; one of these oxysterols, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), was recently identified in Dhcr7-deficient cells and in brain tissues of Dhcr7-null mouse. We report here the isolation and characterization of three novel 7-DHC-derived oxysterols (4α- and 4β-hydroxy-7-DHC and 24-hydroxy-7-DHC) in addition to DHCEO and 7-ketocholesterol (7-kChol) from the brain tissues of AY9944-treated rats. The identities of these five oxysterols were elucidated by HPLC-ultraviolet (UV), HPLC-MS, and 1D- and 2D-NMR. Quantification of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol in rat brain, liver, and serum were carried out by HPLC-MS using d(7)-DHCEO as an internal standard. With the exception of 7-kChol, these oxysterols were present only in tissues of AY9944-treated, but not control rats, and 7-kChol levels were markedly (>10-fold) higher in treated versus control rats. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the pathogenesis of SLOS.  相似文献   

14.
Triparanol and 20,25-diazacholesterol inhibit cholesterol biosynthesis and result in the accumulation of desmosterol. AY-9944, another inhibitor, produces an accumulation of 7-dehydrocholesterol. Adult male C3H mice receive one of these drugs intraperitoneally. Livers, adrenal glands, and testes from each drug group are excised, and portions of each are analyzed by a modified Liebermann-Burchard reaction for quantitation of sterols. Adrenals and testes are examined also by electron microscopy. Fine-structural localization of acid phosphatase has been studied in triparanol-treated adrenal glands. Biochemical analysis reveals that 14–64% of the sterols occurs as desmosterol or 7-dehydrocholesterol. Fine-structural alterations in the adrenal glands and testes from each drug group are essentially identical. The predominant cytological feature is the occurrence of increased numbers of pleomorphic, unit-membrane-limited, electron-opaque, cytoplasmic inclusions. Hence, the cellular modifications following triparanol administration are not unique, as has been suggested. They represent a generalized phenomenon, probably related to inhibition of cholesterol biosynthesis, which is an effect common to each drug. Lead phosphate reaction product (indicating acid phosphatase activity) is demonstrable within these membrane-limited cytoplasmic bodies, identifying them as morphological lysosomes. The utilization of a lysosomal mechanism in sterol-synthesizing cells, which are accumulating cholesterol intermediates, is discussed.  相似文献   

15.
The Smith-Lemli-Opitz syndrome (SLOS) is a congenital birth defect syndrome caused by a deficiency of 3beta-hydroxysterol Delta(7)-reductase, the final enzyme in the cholesterol biosynthetic pathway. The patients have reduced plasma and tissue cholesterol concentrations with the accumulation of 7-dehydrocholesterol and 8-dehydrocholesterol. Bile acid synthesis is reduced and unnatural cholenoic and cholestenoic acids have been identified in some SLOS patients. To explore the mechanism of the abnormal bile acid production, the activities of key enzymes in classic and alternative bile acid biosynthetic pathways (microsomal cholesterol 7alpha-hydroxylase and mitochondrial sterol 27-hydroxylase) were measured in liver biopsy specimens from two mildly affected SLOS patients. The effects of 7- and 8-dehydrocholesterols on these two enzyme activities were studied by using liver from SLOS model rats that were treated with the Delta(7)-reductase inhibitor (BM15.766) for 4 months and were comparable with more severe SLOS phenotype in plasma and hepatic sterol compositions. In the SLOS patients, cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase were not defective. In BM15.766-treated rats, both enzyme activities were lower than those in control rats and they were competitively inhibited by 7- and 8-dehydrocholesterols. Rat microsomal cholesterol 7alpha-hydroxylase did not transform 7-dehydrocholesterol or 8-dehydrocholesterol into 7alpha-hydroxylated sterols. In contrast, rat mitochondrial sterol 27-hydroxylase catalyzed 27-hydroxylation of 7- and 8-dehydrocholesterols, which were partially converted to 3beta-hydroxycholestadienoic acids. Addition of microsomes to the mitochondrial 27-hydroxylase assay mixture reduced 27-hydroxydehydrocholesterol concentrations, which suggested that 27-hydroxydehydrocholesterols were further metabolized by microsomal enzymes. These results suggest that reduced normal bile acid production is characteristic of severe SLOS phenotype and is caused not only by depletion of hepatic cholesterol but also by competitive inhibition of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase activities by accumulated 7- and 8-dehydrocholesterols. Unnatural bile acids are synthesized mainly by the alternative pathway via mitochondrial sterol 27-hydroxylase in SLOS.  相似文献   

16.
Meiosis-activating sterol (MAS) was shown to overcome the inhibitory effect of hypoxanthine on spontaneous maturation of mouse oocytes and was suggested to mediate the stimulation of meiosis by gonadotropins. Follicular fluid (FF)-MAS is synthesized by cytochrome P450 lanosterol 14alpha-demethylase (LDM). Follicular LDM was preferentially localized in oocytes by immunohistochemistry. Using [3H]acetate or R-[5-3H]mevalonate as precursors as well as high-performance liquid chromatographic and thin-layer chromatographic separation, we have measured the concentrations of de novo-synthesized lanosterol, FF-MAS, and cholesterol in rat graafian follicles, cumulus-oocyte complexes (COCs), and denuded oocytes (DOs) treated with LH, AY-9944 (an inhibitor of Delta14-reductase, which was anticipated to increase FF-MAS levels by inhibiting its metabolism), or both after 8 h of culture. In follicles, both LH and AY-9944 increased the accumulation of FF-MAS as compared to controls. In COCs, AY-9944 caused a marked increase in FF-MAS, but we were unable to detect accumulation of FF-MAS in DOs. Neither the endogenous increases in FF-MAS accumulation nor the addition of FF-MAS to the culture medium could overcome the inhibition on resumption of meiosis by phosphodiesterase inhibitors. Compared to LH-induced resumption of meiosis in follicles, that induced by AY-9944 was much delayed. These results call into question any role of FF-MAS as an obligatory mediator of LH activity on germinal vesicle breakdown. The discrepancy between the positive staining for LDM in oocytes and our inability to detect de novo synthesized FF-MAS in DOs may relate to the sensitivity of the methodology employed and either the number of oocytes used or a deficiency in LDM synthetic activity in such oocytes. Further studies are required to confirm any of these alternatives.  相似文献   

17.
Smith-Lemli-Opitz syndrome (SLOS) is caused by an inherited defect in the last step in cholesterol (Chol) biosynthesis, leading to abnormal accumulation of 7-dehydrocholesterol and decreased Chol levels. Progressive retinal degeneration occurs in an animal model of SLOS, induced by treating rats with AY9944, a selective inhibitor of the enzyme affected in SLOS. Here we evaluated alterations in the biochemical and physical properties of retinal rod outer segment (ROS) membranes in this animal model. At 1 month of AY9944 treatment, there were modest alterations in fatty acid composition, but no significant differences in cis-parinaric acid (cPA) spectroscopic parameters in ROS membranes from treated versus control rats. However, at 3 months, ROS docosahexaenoic acid (DHA) content was dramatically reduced, and cPA fluorescence anisotropy values were decreased, relative to controls. Also, 1,6-diphenyl-1,3,5-hexatriene exhibited decreased rotational motion and increased orientational order in ROS membranes from 3 month-old AY9944-treated rats, relative to controls. No significant changes in protein:lipid ratios were observed; however, rhodopsin regenerability was compromised by 3 months of treatment. These findings are consistent with reduced ROS membrane fluidity in the SLOS rat model, relative to controls, primarily due to the dramatic reduction in membrane DHA levels, rather than altered sterol composition.  相似文献   

18.
Enzymatic conversion of 7-dehydrocholesterol to cholesterol by liver microsomes was increased by addition of Tween 80. This increase was proportional to Tween 80 concentration, and reached its maximum of 250% of baseline activity after addition of 300 μg/ml of Tween 80. This enhancement was comparable to that achieved by addition of 7.4 mg/ml of cytosol protein. No additive effect was observed with Tween 80 combined with cytosol protein. These data suggest that Tween 80 can substitute for sterol carrier protein 2 in the conversion of 7-dehydrocholesterol to cholesterol.  相似文献   

19.
Wilson disease (WD) is caused by mutations of the WD gene ATP7B resulting in copper accumulation in different tissues. WD patients display hepatic and neurological disease with yet poorly understood pathomechanisms. Therefore, we studied age-dependent (3, 6, 47weeks) biochemical and bioenergetical changes in Atp7b(-/-) mice focusing on liver and brain. Mutant mice showed strongly elevated copper and iron levels. Age-dependently decreasing hepatic reduced glutathione levels along with increasing oxidized to reduced glutathione ratios in liver and brain of 47weeks old mice as well as elevated hepatic and cerebral superoxide dismutase activities in 3weeks old mutant mice highlighted oxidative stress in the investigated tissues. We could not find evidence that amino acid metabolism or beta-oxidation is impaired by deficiency of ATP7B. In contrast, sterol metabolism was severely dysregulated. In brains of 3week old mice cholesterol, 8-dehydrocholesterol, desmosterol, 7-dehydrocholesterol, and lathosterol were all highly increased. These changes reversed age-dependently resulting in reduced levels of all previously increased sterol metabolites in 47weeks old mice. A similar pattern of sterol metabolite changes was found in hepatic tissue, though less pronounced. Moreover, mitochondrial energy production was severely affected. Respiratory chain complex I activity was increased in liver and brain of mutant mice, whereas complex II, III, and IV activities were reduced. In addition, aconitase activity was diminished in brains of Atp7b(-/-) mice. Summarizing, our study reveals oxidative stress along with severe dysfunction of mitochondrial energy production and of sterol metabolism in Atp7b(-/-) mice shedding new light on the pathogenesis of WD.  相似文献   

20.
Minor aberrant pathways of cholesterol biosynthesis normally produce only trace levels of abnormal sterol metabolites but may assume major importance when an essential biosynthetic step is blocked. Cholesta-5,8-dien-3beta-ol, its Delta(5,7) isomer, and other noncholesterol sterols accumulate in subjects with the Smith-Lemli-Opitz syndrome (SLOS), a severe developmental disorder caused by a defective Delta(7) sterol reductase gene. We have explored the formation and metabolism of unsaturated sterols relevant to SLOS by incubating tritium-labeled Delta(5,8), Delta(6, 8), Delta(6,8(14)), Delta(5,8(14)), and Delta(8) sterols with rat liver preparations. More than 60 different incubations were carried out with washed microsomes or the 10,000 g supernatant under aerobic or anaerobic conditions; some experiments included addition of cofactors, fenpropimorph (a Delta(8);-Delta(7) isomerase inhibitor), and/or AY-9944 (a Delta(7) reductase inhibitor). The tritium-labeled metabolites from each incubation were identified by silver ion high performance liquid chromatography on the basis of their coelution with unlabeled authentic standards, as free sterols and/or acetate derivatives. The Delta(5,8) sterol was converted slowly to cholesterol via the Delta(5,7) sterol, which also slowly isomerized back to the Delta(5,8) sterol. The Delta(6,8) sterol was metabolized rapidly to cholesterol by an oxygen-requiring pathway via the Delta(7,9(11)), Delta(8), Delta(7), and Delta(5,7) sterols as well as by an oxygen-independent route involving initial isomerization to the Delta(5,7) sterol. The Delta(8) sterol was partially metabolized to Delta(5,8), Delta(6,8), Delta(7,9(11)), and Delta(5,7,9(11)) sterols when isomerization to Delta(7) was blocked.The combined results were used to formulate a scheme of normal and aberrant biosynthetic pathways that illuminate the origin and metabolic fate of abnormal sterols observed in SLOS and chondrodysplasia punctata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号