首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

2.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analysis and ELISAs. Eotaxin and MCP-4 mRNA expression induced by TNF-alpha alone or in combination with IFN-gamma was near-maximal after 1 h, peaked at 4 and 8 h, respectively, remained unchanged up to 24 h, and was protein synthesis independent. In contrast, RANTES mRNA was detectable only after 2 h and slowly increased to a peak at 24 h, and was protein synthesis dependent. Induction of eotaxin and MCP-4 mRNA showed a 10- to 100-fold greater sensitivity to TNF-alpha compared with RANTES mRNA. IL-4 and IFN-gamma had selective effects on chemokine expression; IL-4 selectively up-regulated the expression of eotaxin and MCP-4 and potentiated TNF-alpha-induced eotaxin, while IFN-gamma markedly potentiated only the TNF-alpha-induced expression of RANTES. Although budesonide inhibited the expression of chemokine mRNA to a variable extent, it effectively inhibited production of eotaxin and RANTES protein. Budesonide inhibited both RANTES- and eotaxin promoter-driven reporter gene activity. Budesonide also selectively accelerated the decay of eotaxin and MCP-4 mRNA. These results point to IL-4 as a possible mediator by which Th2 cells may induce selective production of C-C chemokines from epithelium and indicate that glucocorticoid inhibit chemokine expression through multiple mechanisms of action.  相似文献   

3.
The mechanistic relationships between initiating stimulus, cellular source and sequence of chemokine expression, and leukocyte recruitment during inflammation are not clear. To study these relationships in an acute inflammatory process, we challenged a murine air pouch with carrageenan. A time-dependent increase in TNF-alpha, monocyte chemottractant protein-1 (MCP-1), macrophage-inflammatory protein-1alpha (MIP-1alpha), RANTES, KC, and MIP-2 was found in the exudates preceding cell recruitment, but displaying different kinetic profiles. Air pouches generated for 2, 6, or 9 days before initiating inflammation demonstrated a proportional increase in the number of cells lining the cavities. Two hours after carrageenan stimulation, the synthesis of TNF-alpha and all chemokines but RANTES increased in proportion to the lining cellularity, although no differences in infiltrating leukocytes were found, suggesting that the early source of these mediators is resident cells. To assess the contribution of neutrophils to chemokine synthesis at later time points, we used neutropenic animals. Neutrophil depletion caused a decrease in TNF-alpha (51%), KC (37%), MIP-1alpha (30%), and RANTES (57%) levels and a 2-fold increase in monocytes 4 h after challenge. No effect on MIP-2 and MCP-1 levels was observed. The selective blockade of CXCR2 or CCR1 inhibited neutrophil recruitment by 74% and 54%, respectively, without a significant inhibition of monocytes. A differential effect on TNF-alpha and MCP-1 levels was observed after these treatments, indicating that the two receptors did not subserve a mere redundant chemotactic role. Overall, our results suggest that chemokines synthesized by resident cells play an important role in the evolution of the inflammatory response.  相似文献   

4.
Tumors commonly produce chemokines for recruitment of host cells, but the biological significance of tumor-infiltrating inflammatory cells, such as monocytes/macrophages, for disease outcome is not clear. Here, we show that all of 30 melanoma cell lines secreted monocyte chemoattractant protein-1 (MCP-1), whereas normal melanocytes did not. When low MCP-1-producing melanoma cells from a biologically early, nontumorigenic stage were transduced to overexpress the MCP-1 gene, tumor formation depended on the level of chemokine secretion and monocyte infiltration; low-level MCP-1 secretion with modest monocyte infiltration resulted in tumor formation, whereas high secretion was associated with massive monocyte/macrophage infiltration into the tumor mass, leading to its destruction within a few days after injection into mice. Tumor growth stimulated by monocytes/macrophages was due to increased angiogenesis. Vessel formation in vitro was inhibited with mAbs against TNF-alpha, which, when secreted by cocultures of melanoma cells with human monocytes, induced endothelial cells under collagen gels to form branching, tubular structures. These studies demonstrate that the biological effects of tumor-derived MCP-1 are biphasic, depending on the level of secretion. This correlates with the degree of monocytic cell infiltration, which results in increased tumor vascularization and TNF-alpha production.  相似文献   

5.
Pyelonephritis, in which renal tubular epithelial cells are directly exposed to bacterial component, is a major predisposing cause of renal insufficiency. Although previous studies have suggested C-C chemokines are involved in the pathogenesis, the exact source and mechanisms of the chemokine secretion remain ambiguous. In this study, we evaluated the involvement of Toll-like receptors (TLRs) in C-C chemokine production by mouse primary renal tubular epithelial cells (MTECs). MTECs constitutively expressed mRNA for TLR1, 2, 3, 4, and 6, but not for TLR5 or 9. MTECs also expressed MD-2, CD14, myeloid differentiation factor 88, and Toll receptor-IL-1R domain-containing adapter protein/myeloid differentiation factor 88-adapter-like. Synthetic lipid A and lipoprotein induced monocyte chemoattractant protein 1 (MCP-1) and RANTES production in MTECs, which strictly depend on TLR4 and TLR2, respectively. In contrast, MTECs were refractory to CpG-oligodeoxynucleotide in chemokine production, consistently with the absence of TLR9. LPS-mediated MCP-1 and RANTES production in MTECs was abolished by NF-kappaB inhibition, but unaffected by extracellular signal-regulated kinase inhibition. In LPS-stimulated MTECs, inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase significantly decreased RANTES, but did not affect MCP-1 mRNA induction. Thus, MTECs have a distinct expression pattern of TLR and secrete C-C chemokines in response to direct stimulation with a set of bacterial components.  相似文献   

6.
Monocytes/macrophages play a critical role in the initiation and progression of a variety of glomerulonephritides. We sought to define the interactions between physiologically activated human monocytes and glomerular mesangial cells (MC) by employing a cell culture system that permits the accurate assessment of the contribution of soluble factors and cell-to-cell contact. Human peripheral blood monocytes, primed with IFN-gamma and GM-CSF, were activated with CD40 ligand (CD40L) or TNF-alpha and cocultured with MC. CD40L-activated monocytes induced higher levels of IL-6, monocyte chemoattractant protein-1 (MCP-1) and ICAM-1 synthesis by MC. Separation of CD40L-activated monocytes from MC by a porous membrane decreased the mesangial synthesis of IL-6 by 80% and ICAM-1 by 45%, but had no effect on MCP-1. Neutralizing Abs against the beta 2 integrins, LFA-1 and Mac-1, decreased IL-6 production by 40 and 50%, respectively. Ligation of mesangial surface ICAM-1 directly enhanced IL-6, but not MCP-1, production. Simultaneous neutralization of soluble TNF-alpha and IL-1 beta decreased MCP-1 production by 55% in membrane-separated cocultures of MC/CD40L-activated monocytes. Paraformaldehyde-fixed CD40L-activated monocytes (to preserve membrane integrity but prevent secretory activity), cocultured with MC at various ratios, induced IL-6, MCP-1, and ICAM-1 synthesis by MC. Plasma membrane preparations from activated monocytes also induced mesangial IL-6 and MCP-1 synthesis. The addition of plasma membrane enhanced TNF-alpha-induced mesangial IL-6 production by approximately 4-fold. Together, these data suggest that the CD40/CD40L is essential for optimal effector function of monocytes, that CD40L-activated monocytes stimulate MC through both soluble factors and cell-to-cell contact mediated pathways, and that both pathways are essential for maximum stimulation of MC.  相似文献   

7.
8.
Cellular immunity plays a major role in controlling human papilloma virus infection and development of cervical carcinoma. Mononuclear cell infiltration possibly due to the action of chemokines becomes prominent in the tumor tissue. In fact, the macrophage chemoattractant protein-1, MCP-1, was detected in cervical squamous cell carcinoma in situ, whereas absent in cultured cells. From this, unknown environmental factors were postulated regulating chemokine expression in vivo. In this study, we show high CD40 expression on cervical carcinoma cells and CD40 ligand (CD40L) staining on attracted T cells in tumor tissue, suggesting a paracrine stimulation mechanism via CD40L-CD40 interactions. We therefore investigated chemokine synthesis in nonmalignant and malignant human papilloma virus-positive cell lines after CD40L exposure. Constitutive expression of MCP-1, MCP-3, RANTES, and IFN-gamma-inducible protein-10 was almost undetectable in all cell lines tested. CD40L was able to induce MCP-1 production; however, despite much higher CD40 expression in malignant cells, MCP-1 induction was significantly lower compared with nontumorigenic cells. After sensitization with IFN-gamma, another T cell-derived cytokine showing minimal effects on CD40 expression levels, CD40 ligation led to a more than 20-fold MCP-1 induction in carcinoma cell lines. An even stronger effect was observed for IFN-gamma-inducible protein-10. Our study highlights the synergism of T cell-derived mediators such as CD40L and IFN-gamma for chemokine responses in cervical carcinoma cells, helping to understand the chemokine expression patterns observed in vivo.  相似文献   

9.
Xiao  Bao-Guo  Mousa  Alyaa  Kivisäkk  Pia  Seiger  Åke 《Brain Cell Biology》1998,27(8):575-580
The cellular infiltration found during CNS inflammation consists of monocytes and activated T cells, suggesting the presence of cell-specific chemotactic signals during inflammatory responses. Astrocyte chemokine expression might contribute to site-specific leukocyte infiltration within the CNS. To investigate the factors that regulate astrocyte chemokine expression, we examined the ability of human fetal astrocytes to induce β-family chemokine mRNA. Astrocyte-derived monocyte chemoattractant protein-1 (MCP-1), RANTES, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β mRNA were easily induced by lipopolysaccharide and/or the proinflammatory cytokines (IFNγ and/or TNF-α), respectively. Addition of both IFNγ and TNF-α together did not lead to an additive effect but resulted in the inhibition of MCP-1 and MIP-1β mRNA expression, indicating that interaction between chemokines and cytokines may play a key role in regulating the local immune response of resident and infiltrating cells at the site of lesion. Interestingly, ultraviolet light-inactivated measles virus, but not cytomegalovirus, strongly induced expression of MCP-1, RANTES, MIP-1α, and MIP-1β mRNA in human embryonic astrocytes, especially MCP-1 and MIP-1β. An association occurs between the β-family chemokine expression in astrocytes and inflammatory factors/virus, suggesting a possible role for β-family chemokines in the pathogenesis of CNS inflammatory disease.  相似文献   

10.
Experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 (H-2b) mice is characterized by early (day 12) acute paralysis, followed by a sustained chronic clinical course that gradually stabilizes. Extensive inflammation and demyelination coincide with clinical signs of disease. To identify the mechanisms of these processes, individual proinflammatory and anti-inflammatory cytokines and chemokines were studied. Sensitive single-cell assays were utilized to determine the cellular origin and kinetics of cytokine production in the CNS. Immunization with MOG35-55 peptide resulted in priming of both Th1 (lymphotoxin, IFN-gamma, and TNF-alpha) and Th2 (IL-4) cells in the spleen. However, only Th1 cells were apparent in the CNS. CD4 T cells that produced IFN-gamma or TNF-alpha were present in the CNS by day 7 after immunization with MOG35-55, peaked at day 20, and then waned. TNF-alpha was also produced in the CNS by Mac-1+ cells. On days 7 and 10 after immunization, the TNF-alpha-producing Mac1+ cells were predominantly microglia. By day 14, a switch occurred in that the Mac1+ TNF-alpha-producing cells had the phenotype of infiltrating macrophages. RANTES, IFN-inducible protein 10 (IP-10), and monocyte chemotactic protein 1 chemokine mRNA were detected in the CNS by day 8 after immunization. The early presence of monocyte chemotactic protein 1 (MCP-1) in the CNS provides a mechanism for the recruitment of macrophages. These data implicate TNF-alpha production by a continuum of T cells, microglia, and macrophages at various times during the course of disease. The importance of Th1 cytokines is highlighted, with little evidence for a role of Th2 cytokines.  相似文献   

11.
Chemokines have been implicated convincingly in the driving of leukocyte emigration in different inflammatory reactions. Multiple signaling mechanisms are reported to be involved in intracellular activation of chemokine expression in vascular endothelial cells by various stimuli. Nevertheless, redox-regulated mechanisms of chemokine expression in human dermal microvascular endothelial cells (HDMEC) remain unclear. This study examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1 mM) and spermine NONOate (Sper-NO, 1 mM) on the secretion and gene expression of chemokines, interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, regulated upon activation normal T cell expressed and secreted (RANTES), and eotaxin. This study also addresses PDTC and Sper-NO effects on activation of nuclear factor kappa B (NF-kappaB) induced by TNF-alpha (10 ng/ml). Treatment with TNF-alpha for 8 h significantly increased secretion of IL-8, MCP-1, and RANTES, but not of eotaxin, in cultured HDMEC. Up-regulation of these chemokines was suppressed significantly by pretreatment with PDTC or Sper-NO for 1 h, but not by 1 mM 8-bromo-cyclic GMP. The mRNA accumulation of IL-8, MCP-1, RANTES, and eotaxin, and activation of NF-kappaB were induced by TNF-alpha for 2 h; all were suppressed significantly by the above two pretreatments. These findings indicate that both secretion and mRNA accumulation of IL-8, MCP-1, and RANTES in HDMEC induced by TNF-alpha are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly via blocking redox-regulated NF-kappaB activation. These results suggest that restoration of the redox balance using antioxidant agents or nitric oxide pathway modulators may offer new opportunities for therapeutic interventions in inflammatory skin diseases.  相似文献   

12.
Neuroprogenitor cells are an important resource because of their great potential to replace damaged cells in the brain caused by trauma and disease. Studies have shown that when neuroprogenitor cells are transplanted into the brain they migrate towards damaged areas, suggesting that these areas express factors that recruit migrating cells. Generally, after neuronal injury, there is a neuroinflammatory response that results in increased chemokine production. In this present study, we demonstrate that monocyte chemoattractant protein-1 (MCP-1) significantly induces the migration of NT2 neuroprogenitor cells. Activation of intracellular cyclic adenosine monophosphate or protein kinase C with forskolin and phorbol 12-myristate 13-acetate, respectively, was able to completely abolish the MCP-1-induced migration. Contrarily, neither extracellular signal-regulated kinase nor p38 mitogen-activated protein kinase was required for NT2 cells to respond to MCP-1. Previously, we showed that amyloid precursor protein (APP) activity increases MCP-1 expression in NT2 cells. We now demonstrate that NT2 cells expressing APP can induce migration of other neuroprogenitor cells. Utilizing a MCP-1 neutralizing antibody, we discovered that APP-induced migration was not caused solely by increased MCP-1 production. Interestingly, APP-increased expression of several C–C chemokines: MCP-1, regulated upon activation, normal T-cell expressed, and secreted (RANTES), and macrophage inflammatory protein alpha (MIP-1 alpha). This demonstrates the unique role APP has in regulating chemokine production, which directly affects cell migration. Taken together, these data provides greater detail of the chemotactic factors and intracellular signaling that direct neuroprogenitor cell migration, allowing for better understanding of cell migration during transplantation.  相似文献   

13.
Migration of CD4 cells into the pancreas represents a hallmark event in the development of insulin-dependent diabetes mellitus. Th1, but not Th2, cells are associated with pathogenesis leading to destruction of islet beta-cells and disease onset. Lymphocyte extravasation from blood into tissue is regulated by multiple adhesion receptor/counter-receptor pairs and chemokines. To identify events that regulate entry of CD4 cells into the pancreas, we transferred Th1 or Th2 cells induced in vitro from islet-specific TCR transgenic CD4 cells into immunodeficient (NOD.scid) recipients. Although both subsets infiltrated the pancreas and elicited multiple adhesion receptors (peripheral lymph node addressin, mucosal addressin cell adhesion molecule-1, LFA-1, ICAM-1, and VCAM-1) on vascular endothelium, entry/accumulation of Th1 cells was more rapid than that of Th2 cells, and only Th1 cells induced diabetes. In vitro, Th1 cells were also distinguished from Th2 cells by the capacity to synthesize several chemokines that included lymphotactin, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1alpha, whereas both subsets produced macrophage inflammatory protein-1beta. Some of these chemokines as well as RANTES, MCP-3, MCP-5, and cytokine-response gene-2 (CRG-2)/IFN-inducible protein-10 (IP-10) were associated with Th1, but not Th2, pancreatic infiltrates. The data demonstrate polarization of chemokine expression by Th1 vs Th2 cells, which, within the microenvironment of the pancreas, accounts for distinctive inflammatory infiltrates that determine whether insulin-producing beta-cells are protected or destroyed.  相似文献   

14.
Selective diapedesis of Th1 cells induced by endothelial cell RANTES.   总被引:16,自引:0,他引:16  
Differentiated CD4 T cells can be divided into Th1 and Th2 types based on the cytokines they produce. Differential expression of chemokine receptors on either the Th1-type or the Th2-type cell suggests that Th1-type and Th2-type cells differ not only in cytokine production but also in their migratory capacity. Stimulation of endothelial cells with IFN-gamma selectively enhanced transmigration of Th1-type cells, but not Th2-type cells, in a transendothelial migration assay. Enhanced transmigration of Th1-type cells was dependent on the chemokine RANTES produced by endothelial cells, as indicated by the findings that Ab neutralizing RANTES, or Ab to its receptor CCR5, inhibited transmigration. Neutralizing Ab to chemokines macrophage-inflammatory protein-1alpha or monocyte chemotactic protein-1 did not inhibit Th1 selective migration. Whereas anti-CD18 and anti-CD54 blocked basal levels of Th1-type cell adherence to endothelial cells and also inhibited transmigration, anti-RANTES blocked only transmigration, indicating that RANTES appeared to induce transmigration of adherent T cells. RANTES seemed to promote diapedesis of adherent Th1-type cells by augmenting pseudopod formation in conjunction with actin rearrangement by a pathway that was sensitive to the phosphoinositol 3-kinase inhibitor wortmannin and to the Rho GTP-binding protein inhibitor, epidermal cell differentiation inhibitor. Thus, enhancement of Th1-type selective migration appeared to be responsible for the diapedesis induced by interaction between CCR5 on Th1-type cells and RANTES produced by endothelial cells. Further evidence that CCR5 and RANTES play a modulatory role in Th1-type selective migration derives from the abrogation of this migration by anti-RANTES and anti-CCR5 Abs.  相似文献   

15.
Bacillus Calmette-Guerin (BCG) therapy induces a local immunological response mediated by cellular immune and inflammatory reactions that enhance its anti-tumor efficacy in bladder cancer. Monocyte chemotactic protein-1 (MCP-1) and the "regulated on activation normal T expressed and secreted" chemokine (RANTES) are potent chemotactic molecules that attract monocytes and memory T cells. MCP-1 and RANTES levels in patients with superficial bladder cancer treated with intravesical instillations of BCG are significantly higher than in untreated cancer patients and controls. In the present study, the subjects were divided into three groups: (1) control subjects; (2) bladder cancer patients who did not receive BCG treatment; (3) bladder cancer patients who received intravesical administration of BCG. No differences in the basal production and expression of MCP-1 and RANTES mRNA were observed between BCG-treated and untreated patients. BCG treatment influenced the monocyte response to phytohemagglutinin (PHA) and BCG stimulation. After 24-h incubation, monocytes from BCG-treated bladder cancer patients released more MCP-1 and RANTES than those from untreated bladder cancer patients and controls. The anti-tumor effects of BCG observed in superficial bladder cancer therapy may depend on stimulation of the investigated chemokines, which attract monocytes/macrophages and memory T cells.  相似文献   

16.
T cell-mediated liver diseases are associated with elevated serum levels of C-C chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). However, the extent to which the actions of CCL2/MCP-1 contribute to the pathogenesis of T cell-mediated hepatitis remains incompletely understood. Con A-induced hepatitis is a liver-specific inflammation mediated by activated T cells and is driven by an up-regulation of the hepatic expression of TNF-alpha, IFN-gamma, and IL-4. The present study examined the role of CCL2/MCP-1 in the pathogenesis of T cell-mediated hepatitis induced by Con A administration in the mouse. We demonstrate a novel hepatoprotective role for CCL2/MCP-1 during Con A-induced hepatitis, because CCL2/MCP-1 neutralization strikingly enhanced hepatic injury, both biochemically and histologically, after Con A administration. Furthermore, CCL2/MCP-1 neutralization was associated with a significant reduction in the hepatic levels of TNF-alpha and IFN-gamma, but with a significant increase in hepatic IL-4 levels. Moreover, IL-4 production and CCR2 expression by Con A-stimulated CD3(+)NK1.1(+) T cells was significantly reduced by rMCP-1 treatment in vitro. In summary, we propose that CCL2/MCP-1 fulfills a novel anti-inflammatory role in T cell-mediated hepatitis by inhibiting CD3(+)NK1.1(+) T cell-derived IL-4 production through direct stimulation of its specific receptor CCR2. These findings may have direct clinical relevance to T cell-mediated hepatitis.  相似文献   

17.
Human osteoclast formation from monocyte precursors under the action of receptor activator of nuclear factor-kappaB ligand (RANKL) was suppressed by granulocyte macrophage colony-stimulating factor (GM-CSF), with down-regulation of critical osteoclast-related nuclear factors. GM-CSF in the presence of RANKL and macrophage colony-stimulating factor resulted in mononuclear cells that were negative for tartrate-resistant acid phosphatase (TRAP) and negative for bone resorption. CD1a, a dendritic cell marker, was expressed in GM-CSF, RANKL, and macrophage colony-stimulating factor-treated cells and absent in osteoclasts. Microarray showed that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), was profoundly repressed by GM-CSF. Addition of MCP-1 reversed GM-CSF suppression of osteoclast formation, recovering the bone resorption phenotype. MCP-1 and chemokine RANTES (regulated on activation normal T cell expressed and secreted) permitted formation of TRAP-positive multinuclear cells in the absence of RANKL. However, these cells were negative for bone resorption. In the presence of RANKL, MCP-1 significantly increased the number of TRAP-positive multinuclear bone-resorbing osteoclasts (p = 0.008). When RANKL signaling through NFATc1 was blocked with cyclosporin A, both MCP-1 and RANTES expression was down-regulated. Furthermore, addition of MCP-1 and RANTES reversed the effects of cyclosporin A and recovered the TRAP-positive multinuclear cell phenotype. Our model suggests that RANKL-induced chemokines are involved in osteoclast differentiation at the stage of multinucleation of osteoclast precursors and provides a rationale for increased osteoclast activity in inflammatory conditions where chemokines are abundant.  相似文献   

18.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

19.
20.
Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号