首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The hypothesis that photoassimilate partitioning to the soybean nodule is controlled by the rate of N export (via an effect on the turgor of the unloading pathway) was tested. Cessation of N2 fixation due to exposure of the nodulated root to Ar:O2 for over 3 h did not affect the partitioning of photoassimilate to the nodule. In contrast, anaerobic conditions (100% N2) resulted in a temporary cessation or marked slowing of carbon import into the nodule and root organs, reflecting an O2 requirement of the unloading process. Carbon accumulation by the nodulated root was less affected by a rhizosphere treatment of 2% O2, although partitioning was decreased over a period of hours. Treatment with 100% O2 also caused an immediate diversion of photoassimilate from the root to the shoot system, although the extent of this diversion was variable. Treatment with stepped increases in O2 did not affect partitioning. It is concluded that the unloading kinetics of the nodule were not disturbed by changes in nodule N metabolism, and therefore that control of assimilate partitioning to the nodule is not influenced by a turgor mechanism involving a balance between the primary export and import solutes. However, photoassimilate import was matched to the respiratory demand of the root system.  相似文献   

2.
It is concluded that the permeability of the soybean nodule to gases is not linked to the supply of solutes or water via the phloem to the nodule. Nodule respiration and nitrogenase activity were less affected by diel variation and shading treatments than partitioning to the nodule, as assessed using a non-invasive 11C-based technique. Thus C import to the nodule was not matched to C requirement by the nodule. Transit times of tracer to, and within, the nodulated root increased under conditions of reduced photosynthetic rate. The increase in transit time was interpreted as a reduction in the flux of phloem sap. Thus the fluxes of both water and C to the nodule decreased following a reduction in photosynthetic rate. The change in partitioning of recent photosynthate to soybean roots and nodules in response to changes in photoassimilate availability was also used to assess the 'priority' of these sinks. Partitioning from the leaf to the root system was greatly decreased when photoassimilate availability was limited, indicating that root system priority is lower than that of the shoot, as reported for other systems. However, partitioning of tracer arriving in the root system between the nodulated and non-nodulated zones of the root was not affected by changes in photoassimilate availability, as caused by diel change, shading, or steaming of branch roots. Thus although nodules are sinks of high sink 'activity', they have 'priority' equal to that of other root sinks. It is suggested that there are similar phloem unloading kinetics, despite the very different metabolic destiny of the carbohydrate within the two organs.  相似文献   

3.
Changes with age of protein and oil content in field-grown Helianthusannuus seeds were followed during the grain filling period.Seeds were sampled from different zones on the flower head:peripheral, intermediate, and central. Regardless of seed position,at maturity protein and oil content accounted for approximately18% and 50% of the dry weight respectively. In an attempt todetermine the importance of the role of photosynthesis in grain-filling,14CO2 was incorporated into sunflower leaves and translocatedradioactive photoassimilates in the seed were studied. 14C-labelledproducts including carbohydrates, nitrogenous compounds andlipids were determined as a function of seed position, lengthof chase period, and seed age. Within 8 h, 14C-labelled photosynthateis detected in the seed, up to 80% of seed-incorporated radioactivitybeing in the form of free sugars and organic acids. The conversionrate from free sugars to storage compounds (lipids, proteinsand starch) varies according to seed position and age. Lipidsconstitute the major photosynthetic sink, reaching levels ofgreater than 80% of the total seed-incorporated radioactivity.The effects of abscisic acid on uptake and partitioning of 14Csucrose into immature excised cotyledons were also studied. Key words: Sunflower, photosynthate, abscisic acid  相似文献   

4.
The direct double-antibody enzymelinked immunosorbent assay system was used in the detection and measurement of seed lectins from peanut (Arachis hypogaea L.) and soybean (Glycine max L.) plants (PSL and SBL, respectively) that had been inoculated with their respective rhizobia. Concentrations of PSL dropped to undetectable levels in peanut roots at 9 d and stems and leaves at 27 d after planting; SBL could no longer be detected in soybean roots at 9 d and in stems and leaves at 12 d. A lectin antigenically similar to PSL was first detected in root nodules of peanuts at 21 d reaching a maximum of 8 g/g at 29 d then decreasing to 2.5 g/g at 60 d. There was no evidence of a corresponding lectin in soybean nodules.Sugar haemagglutination inhibition tests with neuraminidase-treated human blood cells established that PSL and the peanut nodule lectin were both galactose/lactose-specific. Further tests with rabbit blood cells demonstrated a second mannosespecific lectin in peanut nodule extracts that was not detected in root extracts of four-week-old inoculated plants or six-week-old uninoculated plants, although six-week-old root extracts from inoculated plants showed weak lectin activity. The root extracts from both nodulated and uninoculated plants contained another peanut lectin that agglutinated rabbit but not human blood cells. Haemagglutination by this lectin was, however, not inhibited by simple sugars but a glycoprotein, asialothyroglobulin, was effective in this respect.Abbreviations DAS double antibody sandwich - ELISA enzyme-linked immunosorbent assay - PBS phosphate-buffered saline - PSL peanut seed lectin - SBL soybean lectin  相似文献   

5.
Nodulated root systems of white lupin (Lupinus albus L. cv Ultra: Rhizobium strain WU425) were exposed to Ar:O2 (80:20, v/v) or Ar:N2:O2 (70:10:20, v/v/v) and C and N partitioning were examined over a 9- or 10-day period in comparison with control plants with nodulated roots retained in air. Accumulation of N ceased in plants exposed to Ar:O2 or was much reduced in plants exposed to Ar:N2:O2, but net C assimilation rates and profiles of C utilization remained similar to those of control N2-fixing plants. There was, however, a proportional reduction in CO2 evolution from nodulated roots of the Ar:O2 treatment. Xylem N levels fell rapidly after application of Ar:O2. C:N ratios of phloem sap of petioles and of stem base rose during the first day of Ar:O2 treatment and then fell progressively back to levels close to that of control plants as leaf reserves of N became available for loading of phloem. Stem top phloem sap increased progressively in C:N ratio throughout Ar:O2 treatment, presumably due to increasing shortage of xylem derived N for xylem to phloem exchange. Reexposure of Ar:O2-treated nodulated root systems to air prompted a rapid recovery of N2 fixation and restoration of plant N status. Rates of N2 fixation in plants whose roots were exposed to a range of N2 concentrations indicated an apparent Km of 10% N2 for the attached intact white lupin nodule.  相似文献   

6.
Symbiotic effectiveness and n(2) fixation in nodulated soybean   总被引:8,自引:3,他引:8       下载免费PDF全文
Sloger C 《Plant physiology》1969,44(12):1666-1668
  相似文献   

7.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

8.
Application of allopurinol (AP; 1H-pyrazolo-[3,5- d ]pyrimidine-4-o1) to intact nodulated roots of ureide-forming legumes causes rapid inhibition of NAD:xanthine dehydrogenase (XDH: EC 1.2.1.37), cessation of ureide synthesis and, subsequently, severe nitrogen deficiency (Atkins et al. 1988. Plant Physiology 88: 1229–1234). Nitrogen deficiency is a result of inhibited nitrogenase (EC 1.7.99.2) activity. Using an open gas exchange system to measure H2 and CO2 evolution, short term effects of AP application were examined in a Hup soybean symbiosis [ Glycine max (L.) Merr. cv. Harosoy: USDA 16]. The onset of inhibition of nitrogenase was detected after ca 2 h exposure of the roots to AP. At the same time xanthine began to accumulate and ureide levels declined in nodules as a result of inhibition of XDH. The decline in H2 evolution following AP application was not due to altered electron allocation between N2 and H+ by nitrogenease but was coincident with increased gaseous diffusive resistance of nodules and a decline in intracellular oxygen concentration. A possible scheme for the intermediary metabolism of soybean nodules which might account for a direct connection between nitrogenase activity and ureide synthesis is proposed. The suggested mechanism envisages coupling production of reducing power by cytosolic enzymes of purine oxidation to synthesis of dicarboxylic acid substrates (malate and succinate) required for bacteroid respiration.  相似文献   

9.
Differences in canopy apparent photosynthesis (CAP) among soybean [Glycine max (L.) Merr.] genotypes have been shown to be correlated to seed yields. Since the physiological basis for such differences in CAP is unknown, two cultivars known to differ in CAP, Tracy and Davis, were studied during the 1978–1980 growing seasons. The CAP and dry weights of component plant parts were determined. In 1978 and 1979, 14CO2 uptake by vertical leaf strata was determined and specific leaf weight (SLW) and leaf area index (LAI) were determined for corresponding strata in 1979 and 1980. Measurements were taken on several dates during reproductive growth. With the exception of CAP, all measurements (14C uptake, dry weights) were made in layers within the canopy. CAP on some dates were significantly higher in Tracy than in Davis and integrated CAP values from a certain growth period, labeled as R5 to R7, averaged 16 percent higher in Tracy for the three years studied. No differences in the relative recovery of 14C from different layers of leaves in the canopy were found. This indicates that variations in canopy structure or leaf orientation did not play a major role in the CAP differences between cultivars. The differences seem related to variations in leaf dry weights. Overall, Tracy exhibited 13.5, 19.2, and 13.2 percent greater leaf dry weights than Davis during 1978, 1979, and 1980, respectively. These differences in leaf dry weight seem largely due to a differences in the SLW. Data from these experiments indicate that differences in soybean CAP values were associated with differences in SLW.Abbreviations CAP Canopy Apparent Photosynthesis - CER Carbondioxide Exchange Rates - EST Eastern Standard Time - LAI Leaf Area Index - LSD Least Significant Difference - POPOP 1,4-bis-[2(5-phenyloxazdyl)]-benzene - PPO 2,5-diphenyloxazole - SLW Specific Leaf Weight  相似文献   

10.
Nodulated (T202) and non-nodulated (T201) isolines of soybean (Glycine max [L.] Merr.) were cultivated in a rotated paddy field in Niigata, Japan. The pods, and seeds were harvested at 7-day intervals until maturity, and the subunit compositions of seed storage proteins were analyzed by SDS-PAGE. The β-subunit of β-conglycinin could scarcely be detected in the non-nodulated isoline, T201, at any period throughout seed development, although it was a major component in T202. The accumulation of α′- and α-subunits of β-conglycinin, together with the acidic and basic subunits of glycinin, appeared about one week later in seeds of T201 than in those of T202, perhaps due to a shortage of nitrogen and growth retardation. Northern hybridization could not detect the β-subunit mRNA in immature T201 seeds, while it was pronounced in T202. These results indicate that the suppression of the β-subunit in the non-nodulating isoline T201 is regulated at the level of mRNA accumulation. The α′(α)-subunit mRNAs were actively expressed in both isolines. Total nitrogen concentration was consistently lower in T201 than T202. No significant difference was observed in either the free amino acid or ureide concentrations in seeds, although the concentration of sucrose was considerably lower in T201 seeds and pods compared with T202. This result indicates the possibility that β-subunit accunmlation was regulated not only directly by total nitrogen concentration but also by carbohydrate concentrations. Nitrogen regulation of storage protein subunit levels of soybean seed were evaluated using T201 and T202. Greenhouse-grown plants were subjected to different levels and timing of nitrate treatments. The culture solution (2, 5 or 10 mM NO3–was supplied from flowering, 42 days after planting (DAP), until maturation (137 DAP), or switched from 2 to 10 mM, or from 10 to 2 mM at 61 DAP. With a continuous 2 mM NO3–treatment, seed dry weight and N concentration of the T201 plants were significantly lower than those in the T202 plants due to the lack of N2 fixation by the non nodulated T201 plants. However, when adequate NO3 was supplied, N concentration and dry weight were similar in T201 and T202 seeds. When 5 mM NO3 was supplied, the subunit proportion of the seed storage protein was similar in non-nodulating and nodulating isolines. On the other hand, when plants received a low level of NO3 (2 mM), the β-conglycinin proportion was lower in T201 than in T2O2. Furthermore, in the nodulating T202 plants treated with 10 mM NO3–the proportion of β-conglycinin increased markedly. The results indicate that non-nodulated T201 has a normal, non-defective, β-subunit gene and that limited N availability decreases accumulation of β-conglycinin, whereas high N availability increases the proportion of β-conglycinin in soybean seeds, irrespective of whether N was derived from N2 fixation or from NO3 absorption.  相似文献   

11.
Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in "autoregulation of nodulation."  相似文献   

12.
Incorporation of 15N into allantoin and allantoic acid in noduleswas higher than that in roots. This confirms that nodules produceallantoin. The 15N concentration in allantoin was slightly higherthan that in allantoic acid, suggesting that allantoin decomposedto allantoic acid. Allantoin and allantoic acid in nodules weretranslocated rapidly to roots. (Received August 25, 1976; )  相似文献   

13.
After it was observed that light induces changes in electron partitioning between the cytochrome and the alternative pathway, the focus interest was directed to assessing what type of photoreceptors are involved and the extent of such modifications. Studies on 5-day-old soybean (Glycine max L.) cotyledons using an oxygen isotope fractionation technique showed that phytochrome is involved in changes in electron partitioning between the cytochrome and the alternative respiratory pathway. A follow-up of a previous study, showing that 5 min of white light caused changes in mitochondrial electron partitioning, demonstrated that while blue light was not involved in any such changes, red light caused a significant shift of electrons toward the alternative pathway. The major shift, observed after 24 h of light, is mainly due to both a decrease in the activity of the cytochrome pathway and an increase in the activity of the alternative pathway. The involvement of a phytochrome receptor was confirmed by demonstration of reversibility by far-red light. The implications of the possible involvement of phytochrome in the regulation of mitochondrial electron transport are discussed.  相似文献   

14.
15.
16.
Nitrogen fixation and nodule permeability to O2 diffusion are decreased by drought stress. Since γ‐aminobutyric acid (GABA) synthesis is rapidly stimulated by a variety of stress conditions including hypoxia, it was hypothesized that decreased O2 availability in nodules stimulates glutamate decarboxylase (GAD) activity (EC 4.1.1.15), thereby resulting in GABA accumulation. First, the amino acid composition of xylem sap was determined in plants subjected to soil water deficits. While the xylem sap concentration of several amino acids increased when the plant was subjected to a water deficit, the greatest increase was in GABA. GABA accumulation was examined in response to stress induced by hypoxia or the addition of polyethylene glycol (PEG) to the nutrient solution. The exposure of soybean nodules to hypoxia for 6 h enhanced the GABA concentration by 6‐fold, but there was no change in GABA concentration in response to the PEG treatment. No major changes in the in vitro GAD activity were measured in nodule cytosol or bacteroids. The present data do not support the hypothesis that decreased nodule O2 permeability and a resulting O2 deprivation inside nodules may stimulate in vitro GAD activity and thus GABA accumulation. However, the data could indicate a possible effect of hypoxia and drought stress on the in vivo activity of GAD.  相似文献   

17.
18.
19.
I.C.Y     
《CMAJ》1965,92(3):136
  相似文献   

20.
The objective of the work was to determine differences in plant response to geographic isolates of a vesicular-arbuscular mycorrhizal (VAM) fungus, and to demonstrate the need for such determinations in the selection of desirable host-endophyte combinations for practical applications. Soybean ( Glycine max (L.) Merr.) plants were inoculated with Bradyrhizobium japonicum and isolates of the VAM-fungal morphospecies Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, collected from an arid (AR), semiarid (SA) or mesic (ME) area. Inoculum potentials of the VAM-fungal isolates were determined and the inocula equalized, achieving the same level of root colonization (41%, P >0.05) at harvest (50 days). Plants of the three VAM treatments (AR, SA and ME) were evaluated against von VAM controls. Significant differences in plant response to colonization were found in dry mass, leaf K, N and P concentrations, and in root/shoot, nodule/root, root length/leaf area and root length/root mass ratios. The differences were most pronounced and consistent between the AR and all other treatments. Photosynthesis and nodule activity were higher ( P <0.05) in all VAM treatments, but only the AR plants had higher ( P <0.05) photosynthetic water-use efficiency than the controls. Nodule activity, evaluated by H2 evolution and C2H2 reduction, differed significantly between treatments. The results are discussed in terms of nutritional and non-nutritional effects of VAM colonization on the development and physiology of the tripartite soybean association in the light of intraspecific variability within the fungal endophyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号