首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Endocardial cells play a critical role in cardiac development and function, forming the innermost layer of the early (tubular) heart, separated from the myocardium by extracellular matrix (ECM). However, knowledge is limited regarding the interactions of cardiac progenitors and surrounding ECM during dramatic tissue rearrangements and concomitant cellular repositioning events that underlie endocardial morphogenesis. By analyzing the movements of immunolabeled ECM components (fibronectin, fibrillin-2) and TIE1 positive endocardial progenitors in time-lapse recordings of quail embryonic development, we demonstrate that the transformation of the primary heart field within the anterior lateral plate mesoderm (LPM) into a tubular heart involves the precise co-movement of primordial endocardial cells with the surrounding ECM. Thus, the ECM of the tubular heart contains filaments that were associated with the anterior LPM at earlier developmental stages. Moreover, endocardial cells exhibit surprisingly little directed active motility, that is, sustained directed movements relative to the surrounding ECM microenvironment. These findings point to the importance of large-scale tissue movements that convect cells to the appropriate positions during cardiac organogenesis.  相似文献   

3.
4.
5.
Tbx5 is essential for heart development   总被引:11,自引:0,他引:11  
  相似文献   

6.
Heart development depends on the spatio-temporally regulated contribution of progenitor cells from the primary, secondary and anterior heart fields. Primary heart field (PHF) cells are first recruited to form a linear heart tube; later, they contribute to the inflow myocardium of the four-chambered heart. Subsequently cells from the secondary (SHF) and anterior heart fields (AHF) are added to the heart tube and contribute to both the inflow and outflow myocardium. In amniotes, progenitors of the linear heart tube have been mapped to the anterior-middle region of the early primitive streak. After ingression, these cells are located within bilateral heart fields in the lateral plate mesoderm. On the other hand SHF/AHF field progenitors are situated anterior to the linear heart tube, however, the origin and location of these progenitors prior to the development of the heart tube remains elusive. Thus, an unresolved question in the process of cardiac development is where SHF/AHF progenitors originate from during gastrulation and whether they come from a region in the primitive streak distinct from that which generates the PHF. To determine the origin and location of SHF/AHF progenitors we used vital dye injection and tissue grafting experiments to map the location and ingression site of outflow myocardium progenitors in early primitive streak stage chicken embryos. Cells giving rise to the AHF ingressed from a rostral region of the primitive streak, termed region ‘A’. During development these cells were located in the cranial paraxial mesoderm and in the pharyngeal mesoderm. Furthermore we identified region ‘B’, located posterior to ‘A’, which gave rise to progenitors that contributed to the primary heart tube and the outflow tract. Our studies identify two regions in the early primitive streak, one which generates cells of the AHF and a second from which cardiac progenitors of the PHF and SHF emerge.  相似文献   

7.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.  相似文献   

8.
9.
10.
Expression pattern of novel chick T-box gene, Tbx20   总被引:2,自引:0,他引:2  
Little is known about the molecular mechanisms involved with the initial specifications of the cardiac mesoderm. In order to identify potential regulatory factors that play important roles in early heart specification, we attempted to isolate the chick H15-related T-box gene and analyze its expression pattern during early development. The chick Tbx20 gene was found to be highly homologous to human, mouse, and zebrafish hrT/Tbx20. Its expression was initially detected in the posterior lateral mesoderm, after which it expanded to the anterior and was intensively co-expressed with a cardiogenic gene, Nkx2.5, in the anterior lateral mesoderm.  相似文献   

11.
12.
13.
The outflow tract of the heart is recruited from a novel heart-forming field.   总被引:19,自引:0,他引:19  
As classically described, the precardiac mesoderm of the paired heart-forming fields migrate and fuse anteriomedially in the ventral midline to form the first segment of the straight heart tube. This segment ultimately forms the right trabeculated ventricle. Additional segments are added to the caudal end of the first in a sequential fashion from the posteriolateral heart-forming field mesoderm. In this study we report that the final major heart segment, which forms the cardiac outflow tract, does not follow this pattern of embryonic development. The cardiac outlet, consisting of the conus and truncus, does not derive from the paired heart-forming fields, but originates separately from a previously unrecognized source of mesoderm located anterior to the initial primitive heart tube segment. Fate-mapping results show that cells labeled in the mesoderm surrounding the aortic sac and anterior to the primitive right ventricle are incorporated into both the conus and the truncus. Conversely, if cells are labeled in the existing right ventricle no incorporation into the cardiac outlet is observed. Tissue explants microdissected from this anterior mesoderm region are capable of forming beating cardiac muscle in vitro when cocultured with explants of the primitive right ventricle. These findings establish the presence of another heart-forming field. This anterior heart-forming field (AHF) consists of mesoderm surrounding the aortic sac immediately anterior to the existing heart tube. This new concept of the heart outlet's embryonic origin provides a new basis for explaining a variety of gene-expression patterns and cardiac defects described in both transgenic animals and human congenital heart disease.  相似文献   

14.
The anterior heart-forming field: voyage to the arterial pole of the heart   总被引:7,自引:0,他引:7  
Studies of vertebrate heart development have identified key genes and signalling molecules involved in the formation of a myocardial tube from paired heart-forming fields in splanchnic mesoderm. The posterior region of the paired heart-forming fields subsequently contributes myocardial precursor cells to the inflow region or venous pole of the heart. Recently, a population of myocardial precursor cells in chick and mouse embryos has been identified in pharyngeal mesoderm anterior to the early heart tube. This anterior heart-forming field gives rise to myocardium of the outflow region or arterial pole of the heart. The amniote heart is therefore derived from two myocardial precursor cell populations, which appear to be regulated by distinct genetic programmes. Discovery of the anterior heart-forming field has important implications for the interpretation of cardiac defects in mouse mutants and for the study of human congenital heart disease.  相似文献   

15.
We have used high-resolution 4D imaging of cardiac progenitor cells (CPCs) in zebrafish to investigate the earliest left-right asymmetric movements during cardiac morphogenesis. Differential migratory behavior within the heart field was observed, resulting in a rotation of the heart tube. The leftward displacement and rotation of the tube requires hyaluronan synthase 2 expression within the CPCs. Furthermore, by reducing or ectopically activating BMP signaling or by implantation of BMP beads we could demonstrate that BMP signaling, which is asymmetrically activated in the lateral plate mesoderm and regulated by early left-right signals, is required to direct CPC migration and cardiac rotation. Together, these results support a model in which CPCs migrate toward a BMP source during development of the linear heart tube, providing a mechanism by which the left-right axis drives asymmetric development of the vertebrate heart.  相似文献   

16.
The ability to regenerate a heart after ablation of cardiogenic mesoderm has been demonstrated in early stage fish and amphibian embryos but this type of regulation of the heart field has not been seen in avians or mammals. The regulative potential of the cardiogenic mesoderm was examined in avian embryos and related to the spatial expression of genes implicated in early cardiogenesis. With the identification of early cardiac regulators such as bmp-2 and nkx-2.5, it is now possible to reconcile classical embryological studies with molecular mechanisms of cardiac lineage determination in vivo. The most anterior lateral embryonic cells were identified as the region that becomes the heart and removal of all or any subset of these cells resulted in the loss of corresponding cardiac structures. In addition, removal of the lateral heart forming mesoderm while leaving the lateral endoderm intact also results in loss of cardiac structures. Thus the medial anterior mesoderm cannot be recruited into the heart lineage in vivo even in the presence of potentially cardiac inducing endoderm. In situ analysis demonstrated that genes involved in early events of cardiogenesis such as bone morphogenetic protein 2 (bmp-2) and nkx-2.5 are expressed coincidentally with the mapped far lateral heart forming region. The activin type IIa receptor (actR-IIa) is a potential mediator of BMP signaling since it is expressed throughout the anterior mesoderm with the highest level of expression occurring in the lateral prospective heart cells. The posterior boundary of actR-IIa is consistent with the posterior boundary of nkx-2.5 expression, supporting a model whereby ActR-IIa is involved in restricting the heart forming region to an anterior subset of lateral cells exposed to BMP-2. Analysis of the cardiogenic potential of the lateral plate mesoderm posterior to nkx-2.5 and actR-IIa expression demonstrated that these cells are not cardiogenic in vitro and that removal of these cells from the embryo does not result in loss of heart tissue in vivo. Thus, the region of the avian embryo that will become the heart is defined medially, laterally, and posteriorly by nkx-2.5 gene expression. Removal of all or part of the nkx-2.5 expressing region results in the loss of corresponding heart structures, demonstrating the inability of the chick embryo to regenerate cardiac tissue in vivo at stages after nkx-2.5 expression is initiated.  相似文献   

17.
In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFbeta and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development.  相似文献   

18.
19.
20.
The restriction of the heart morphogenetic field in Xenopus laevis   总被引:2,自引:0,他引:2  
We have examined the spatial restriction of heart-forming potency in Xenopus laevis embryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes anterior ventral and ventrolateral mesoderm. This area of developmental potency does not extend into more posterior regions. Between postneurula stage 23 and the onset of heart morphogenesis at stage 28, the heart morphogenetic field becomes spatially restricted to the anterior ventral region. The restriction of the heart morphogenetic field during postneurula stages results from a loss of developmental potency in the lateral mesoderm, rather than from ventrally directed morphogenetic movements of the lateral mesoderm. This loss of potency is not due to the inhibition of heart formation by migrating neural crest cells. During postneurula stages, tissue interactions between the lateral mesoderm and the underlying anterior endoderm support the heart-forming potency in the lateral mesoderm. The lateral mesoderm loses the ability to respond to this tissue interaction by stages 27-28. We speculate that either formation of the third pharyngeal pouch during stages 23-27 or lateral inhibition by ventral mesoderm may contribute to the spatial restriction of the heart morphogenetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号