首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
茉莉酸及其前体12-氧-植物二烯酸的HPLC-MS/MS检测方法   总被引:1,自引:0,他引:1  
张双玉  齐芪  李晓慧  盖颖 《植物学报》2017,52(5):631-636
茉莉酸是植物体内重要的伤反应特异激素,含量极低,但作用较大。当植物受到机械伤害时,茉莉酸调控一系列应激反应。12-氧-植物二烯酸(OPDA)是茉莉酸合成途径中的重要前体,与茉莉酸有密切的关系。该研究建立了一种HPLC-MS/MS分析检测方法,可同时检测植物材料中茉莉酸及其前体OPDA含量。利用该方法建立的标准曲线具有良好的线性相关性,相关系数达0.991 9–0.999 5,回收率范围为91.91%–101.56%。该方法同时具有较好的检测灵敏度,2种化合物的最低检测限为3.218和34.129 pmol。研究结果说明该方法切实可靠且具有较好的适用性。利用该方法检测了4种不同植物样品中目标化合物的含量,结果表明该方法能够用于不同植物材料中这2种活性化合物含量的检测分析。  相似文献   

3.
We present a comprehensive, sensitive, and highly specific negative ion electrospray LC/MS method for identifying all structural classes of glucosinolates in crude plant extracts. The technique is based on the observation of simultaneous maxima in the abundances of the m/z 96 and 97 ions, generated by programmed cone voltage fragmentation, in the mass chromatogram. The abundance ratios lie in the range 1:2-1:4 ([m/z 96]/[m/z 97]). Examination of the corresponding full-scan mass spectra allows individual glucosinolates of all structural classes to be identified rapidly and with confidence. The use of linearly programmed cone voltage fragmentation enhances characteristic fragment ions without compromising the abundance of the analytically important [M - H]- ion and its associated (and analytically useful) sulfur isotope peaks. Detection limits are in the low nanogram range for full-scan, programmed cone voltage spectra. Comparison of the technique with LC/MS/MS methods (product ion, precursor ion, and constant neutral loss scans) has shown that the sensitivity and selectivity of the programmed cone voltage method is superior. Data obtained on a variety of plant extracts confirmed that the methodology was robust and reliable.  相似文献   

4.
5.
The identification of large series of metabolites detectable by mass spectrometry (MS) in crude extracts is a challenging task. In order to test and apply the so-called multistage mass spectrometry (MS n ) spectral tree approach as tool in metabolite identification in complex sample extracts, we firstly performed liquid chromatography (LC) with online electrospray ionization (ESI)?CMS n , using crude extracts from both tomato fruit and Arabidopsis leaf. Secondly, the extracts were automatically fractionated by a NanoMate LC-fraction collector/injection robot (Advion) and selected LC-fractions were subsequently analyzed using nanospray-direct infusion to generate offline in-depth MS n spectral trees at high mass resolution. Characterization and subsequent annotation of metabolites was achieved by detailed analysis of the MS n spectral trees, thereby focusing on two major plant secondary metabolite classes: phenolics and glucosinolates. Following this approach, we were able to discriminate all selected flavonoid glycosides, based on their unique MS n fragmentation patterns in either negative or positive ionization mode. As a proof of principle, we report here 127 annotated metabolites in the tomato and Arabidopsis extracts, including 21 novel metabolites. Our results indicate that online LC?CMS n fragmentation in combination with databases of in-depth spectral trees generated offline can provide a fast and reliable characterization and annotation of metabolites present in complex crude extracts such as those from plants.  相似文献   

6.
7.
8.
A diversity of unfavorable environmental factors determines complex interactions between phytohormones and signal elements and also the formation and combined action of metabolites in plants. This permits the plant to overcome stresses and to realize its potential capacities. Synergism between plant chemical constituents during ontogeny was revealed in the case of their responses to various abiotic stressors, such as pathogens or pests, and also during competition between plants. Jasmonic, salicylic, and abscisic acids, ethylene, hydrogen peroxide, NO, antioxidants, defensive proteins, and enzymes can manifest synergistic plant responses to unfavorable factors.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 614–621.Original Russian Text Copyright © 2005 by Ryabushkina.  相似文献   

9.
The aim of this work was to investigate the enzyme inhibition, antioxidant activity, and phenolic compounds of Lecokia cretica (Lam .) DC. Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α‐glycosidase enzymes were strongly inhibited by the L. cretica extracts. IC50 values for the three enzymes were found as 3.21 mg/mL, 2.1 mg/mL, and 2.07 mg/mL, respectively. Antioxidant activities were examined in both aqueous and ethanol (EtOH) extracts using CUPRAC, FRAP, and DPPH method. Also, the phenolic compounds of the endemic plant were identified and quantified by using HPLC/MS/MS. According to the results, the extracts have remarkable antioxidant activities. The most abundant phenolic acids of L. cretica in EtOH extract were determined as quinic acid (12.76 mg/kg of crude extract), chlorogenic acid (3.39 mg/kg), and malic acid (2.38 mg/kg).  相似文献   

10.

Heat stress (HS) seriously affects crop growth, causing significant crop yield losses worldwide. The regulatory mechanisms controlling HS tolerance in plants are not well understood. Phytohormones are important molecules for coordinating myriad of phenomena related to plant growth and development. They are also essential endogenous signaling molecules that actively mediate numerous physiological responses under abiotic stress by triggering stress-responsive regulatory genes involved in plant growth. This review updates the central role of various phytohormones—indole acetic acid, gibberellic acid, abscisic acid, cytokinins, ethylene, salicylic acid, brassinosteroids, strigolactone, and jasmonic acid—in regulating the HS response so that plants can adapt to increasing temperature stress. We also reveal how these stress-responsive phytohormones switch on various regulatory gene(s) and genes encoding antioxidants and heat shock proteins (HSPs) to combat HS in various plant species.

  相似文献   

11.
A highly selective and sensitive method for the simultaneous analysis of several plant hormones and their metabolites is described. The method combines high-performance liquid chromatography (HPLC) with positive and negative electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to quantify a broad range of chemically and structurally diverse compounds. The addition of deuterium-labeled analogs for these compounds prior to sample extraction permits accurate quantification by multiple reaction monitoring (MRM). Endogenous levels of abscisic acid (ABA), abscisic acid glucose ester (ABA-GE), 7'-hydroxy-abscisic acid (7'-OH-ABA), phaseic acid (PA), dihydrophaseic acid (DPA), indole-3-acetic acid (IAA), indole-3-aspartate (IAAsp), zeatin (Z), zeatin riboside (ZR), isopentenyladenine (2iP), isopentenyladenosine (IPA), and gibberellins (GA)1, GA3, GA4, and GA7 were determined simultaneously in a single run. Detection limits ranged from 0.682 fmol for Z to 1.53 pmol for ABA. The method was applied to the analysis of plant hormones and hormonal metabolites associated with seed dormancy and germination in lettuce (Lactuca sativa L. cv. Grand Rapids), using extracts from only 50 to 100 mg DW of seed. Thermodormancy was induced by incubating seeds at 33 degrees C instead of 23 degrees C. Germinating seeds transiently accumulated high levels of ABA-GE. In contrast, thermodormant seeds transiently accumulated high levels of DPA after 7 days at 33 degrees C. GA1 and GA3 were detected during germination, and levels of GA1 increased during early post-germinative growth. After several days of incubation, thermodormant seeds exhibited a striking transient accumulation of IAA, which did not occur in seeds germinating at 23 degrees C. We conclude that hormone metabolism in thermodormant seeds is surprisingly active and is significantly different from that of germinating seeds.  相似文献   

12.
Phytohormones participate in many aspects of the plant life cycle, including responses to biotic and abiotic stresses. They play a key role in plant responses to the environment with direct bearing on a plant’s fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the role of phytohormones in halophytic plants. The variability in maximal salinity level that halophytes can tolerate makes it difficult to characterize the specific traits responsible for salt tolerance. However, the most evident effect of salinity is growth disturbance, and growth is directly governed by phytohormones. Phytohormones such as abscisic acid, salicylic acid ethylene and jasmonates are traditionally related to stress responses, while the involvement of cytokinins, gibberellins and auxins has started to be analyzed. Polyamines, although they can’t be considered phytohormones because of the high concentrations required for cell responses, have been proposed as a new category of plant growth regulators involved in several plant processes and stress responses. This review integrates the advances in the knowledge about phytohormones in halophytes and their participation in salt tolerance.  相似文献   

13.
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.  相似文献   

14.
The two main classes of secondary metabolites, alkaloids and quinovic acid glycosides, of Uncaria tomentosa (Willd.) DC. (Rubiaceae), a Peruvian plant commonly known as ‘uña de gato’, have been analysed. Separation of the alkaloidal fraction was achieved using a solid phase extraction method based on cationic exchange, and an analytical method employing HPLC‐ES/MS has been developed. Quantitative data for commercial wild bark, cultivated bark and leaves are reported. The analysis of quinovic acid glycosides was performed directly on the crude extract using both a fast analytical method based on ?ow injection ES/MS, and a more complete analytical technique using HPLC‐MS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.  相似文献   

16.
Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.  相似文献   

17.
This study aimed to fractionate Alternanthera sessilis Red (ASR) crude extracts and determine their antioxidant activities as well as the related active components in the whole plant. ASR was extracted with water and ethanol, and further separated using a Sephadex LH-20 column. Following the assessments of the polyphenolic contents and antioxidant activities of crude extracts (H2OASR and EtOHASR) and fractions, a HPLC-QToF analysis was performed on the crude extracts and selected fractions (H2OASR FII and EtOHASR FII). Three water fractions (H2OASR FI, FII and FIII) and four ethanolic fractions (EtOHASR FI, FII, FIII and FIV) were derived from their crude extracts, respectively. EtOHASR FII exhibited the greatest total phenolic content (120.41 mg GAE/g fraction), total flavonoid content (223.07 mg RE/g fraction), and antioxidant activities (DPPH IC50=159.43 μg/mL; FRAP=1.93 mmol Fe2+/g fraction; TEAC=0.90 mmol TE/g fraction). Correlation analysis showed significant (p<0.01) positive correlations between both TPC (r=0.748–0.970) and TFC (r=0.686–0.949) with antioxidant activities in the crude extracts and fractions. Flavonoids were the major compounds in the four selected samples tentatively identified using HPLC-QToF-MS/MS, with the highest number of 30 polyphenol compounds detected in the most active fraction, EtOHASR FII.  相似文献   

18.
To investigate the involvement of Allium roylei metabolites in the plant’s defenses, a comprehensive analysis of the content of cysteine sulfoxides, flavonols, polyphenols, ascorbic acid, and saponins was carried out in the various organs of this species. Metabolomics high performance liquid chromatography (HPLC), spectral-based analysis, and histochemcial studies have given important insight to the validity of saponins as a key component involved in plant protection. The root-basal stem, bulb, and leaf extracts exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with inhibition concentration (IC50) ranging from 0.649 to 0.757?mg/mL. The antimicrobial properties of the saponin and flavonoid crude extracts were evaluated. The saponin extracts demonstrated significant antifungal activity depending on the applied concentration, and the growth inhibition rate of the tested fungal pathogens ranged from 1.07 to 47.76%. No appreciable antibacterial activity was recorded in the same sample.  相似文献   

19.
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid‐derived phytohormones, were initially discovered as an “ecological signal” for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL‐mediated plant responses and adaptation to abiotic stresses.  相似文献   

20.
Sonchus oleraceus (L.) L. (Asteraceae) is an edible wild plant, known for its uses in traditional medicine. The aim of this study is to explore the phytochemical composition of the aerial parts (AP) and roots (R) of aqueous extracts of Sonchus oleraceus L. growing in Tunisia, using liquid chromatography-tandem mass spectrometry(LC/MS/MS), and determine the content of polyphenols and antioxidant activities. Results showed that aqueous extracts of AP and R contained, respectively, 195.25±33 μg/g and 118.66±14 μg/g gallic acid equivalent (GAE), and 52.58±7 μg/g and 3.2±0.3μg/g quercetin equivalent. AP and R extracts also contained tannins, 581.78±33 μg/g and 948.44±19 μg/g GAE. The AP extract in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activities, hydroxyl radical scavenging (OH−) and in cupric reducing antioxidant activity (CUPRAC) assays were respectively 0.325±0.036 mg/mL, 0.053±0.018 mg/mL, 0.696±0.031 mg/mL and 60.94±0.004 μMTE/g, while the R extract using the same assays showed, 0.209±0.052 mg/mL, 0.034±0.002 mg/mL, 0.444±0.014 mg/mL and 50.63±0.006 μM Trolox equivalent/g, respectively. A total of 68 compounds were tentatively identified by LC/MS/MS in both extracts in which quinic acid, pyrogallol, osthrutin, piperine, gentisic acid, fisetin, luteolin, caffeic acid, gingerol, were the most abundant in the LC/MS/MS spectrum. Many of these metabolites were found for the first time in Tunisian Sonchus oleraceus L. which may take account for the antioxidant activities exhibited by the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号