首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Emerging evidence indicates that amyloid β peptide (Aβ) initially induces subtle alterations in synaptic function in Alzheimer disease. We have recently shown that Aβ binds to β(2) adrenergic receptor (β(2)AR) and activates protein kinase A (PKA) signaling for glutamatergic regulation of synaptic activities. Here we show that in the cerebrums of mice expressing human familial mutant presenilin 1 and amyloid precursor protein genes, the levels of β(2)AR are drastically reduced. Moreover, Aβ induces internalization of transfected human β(2)AR in fibroblasts and endogenous β(2)AR in primary prefrontal cortical neurons. In fibroblasts, Aβ treatment also induces transportation of β(2)AR into lysosome, and prolonged Aβ treatment causes β(2)AR degradation. The Aβ-induced β(2)AR internalization requires the N terminus of the receptor containing the peptide binding sites and phosphorylation of β(2)AR by G protein-coupled receptor kinase, not by PKA. However, the G protein-coupled receptor kinase phosphorylation of β(2)AR and the receptor internalization are much slower than that induced by βAR agonist isoproterenol. The Aβ-induced β(2)AR internalization is also dependent on adaptor protein arrestin 3 and GTPase dynamin, but not arrestin 2. Functionally, pretreatment of primary prefrontal cortical neurons with Aβ induces desensitization of β(2)AR, which leads to attenuated response to subsequent stimulation with isoproterenol, including decreased cAMP levels, PKA activities, PKA phosphorylation of serine 845 on α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor subunit 1 (GluR1), and AMPA receptor-mediated miniature excitatory postsynaptic currents. This study indicates that Aβ induces β(2)AR internalization and degradation leading to impairment of adrenergic and glutamatergic activities.  相似文献   

2.
The beta(1)-adrenergic receptor (beta(1)AR) is the most abundant subtype of beta-adrenergic receptor in the mammalian brain and is known to potently regulate synaptic plasticity. To search for potential neuronal beta(1)AR-interacting proteins, we screened a rat brain cDNA library using the beta(1)AR carboxyl terminus (beta(1)AR-CT) as bait in the yeast two-hybrid system. These screens identified PSD-95, a multiple PDZ domain-containing scaffolding protein, as a specific binding partner of the beta(1)AR-CT. This interaction was confirmed by in vitro fusion protein pull-down and blot overlay experiments, which demonstrated that the beta(1)AR-CT binds specifically to the third PDZ domain of PSD-95. Furthermore, the full-length beta(1)AR associates with PSD-95 in cells, as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. The interaction between beta(1)AR and PSD-95 is mediated by the last few amino acids of the beta(1)AR, and mutation of the beta(1)AR carboxyl terminus eliminated the binding and disrupted the co-localization of the beta(1)AR and PSD-95 in cells. Agonist-induced internalization of the beta(1)AR in HEK-293 cells was markedly attenuated by PSD-95 co-expression, whereas co-expression of PSD-95 has no significant effect on either desensitization of the beta(1)AR or beta(1)AR-induced cAMP accumulation. Furthermore, PSD-95 facilitated the formation of a complex between the beta(1)AR and N-methyl-d-aspartate receptors, as assessed by co-immunoprecipitation. These data reveal that PSD-95 is a specific beta(1)AR binding partner that modulates beta(1)AR function and facilitates physical association of the beta(1)AR with synaptic proteins, such as the N-methyl-d-aspartate receptors, which are known to be regulated by beta(1)AR stimulation.  相似文献   

3.
The beta(2) adrenergic receptor (beta(2)AR) is a G protein-coupled receptor that is selective to epinephrine. We demonstrate herein monitoring of an agonist-induced conformational change of beta(2)AR in living cells. The monitoring method is based on fluorescence resonance energy transfer from a cyan fluorescent protein (CFP) to a biarsenical fluorophore, FlAsH, attached to the C-terminus, and the third intracellular loop (ICL3), respectively. Recombinant beta(2)ARs exhibited agonist-induced increases in the FlAsH/CFP emission ratio, indicating that the ICL3 approached the C-terminus upon activation. Since the emission ratio changes were on a time scale of seconds, the conformational change of beta(2)AR in living cells was more rapid than that of purified beta(2)AR measured in vitro. Interestingly, the direction of the emission ratio change of beta(2)AR was opposite to that of the norepinephrine-responsive alpha(2A) adrenergic receptor reported recently. It was suggested that this discrepancy corresponds directly to the diametric biological functions, i.e., the activation or inactivation of adenylyl cyclase.  相似文献   

4.
Prolonged agonist stimulation results in down-regulation of most G protein-coupled receptors. When we exposed baby hamster kidney cells stably expressing the human beta1-adrenergic receptor (beta 1AR) to agonist over a 24-h period, we instead observed an increase of approximately 30% in both beta 1AR binding activity and immune-detected receptors. In contrast, beta 2AR expressed in these cells exhibited a decrease of > or =50%. We determined that the basal turnover rates of the two subtypes were similar (t(1/2) approximately 7 h) and that agonist stimulation increased beta 2AR but not beta 1AR turnover. Blocking receptor trafficking to lysosomes with bafilomycin A1 had no effect on basal turnover of either subtype but blocked agonist-stimulated beta 2AR turnover. As beta 1AR mRNA levels increased in agonist-stimulated cells, beta 1AR up-regulation appeared to result from increased synthesis with no change in degradation. To explore the basis for the subtype differences, we expressed chimeras in which the C termini had been exchanged. Each chimera responded to persistent agonist stimulation based on the source of its C-tail; beta 1AR with a beta 2AR C-tail underwent down-regulation, and beta 2AR with a beta 1AR C-tail underwent up-regulation. The C-tails had a corresponding effect on agonist-stimulated receptor phosphorylation and internalization with the order being beta 2AR > beta 1AR with beta 2AR C-tail > beta 2AR with a beta 1AR C-tail > beta 1AR. As internalization may be a prerequisite for down-regulation, we addressed this possibility by co-expressing each subtype with arrestin-2. Although beta 1AR internalization was increased to that of beta 2AR, down-regulation still did not occur. Instead, beta 1AR accumulated inside the cells. We conclude that in unstimulated cells, both subtypes appear to be turned over by the same mechanism. Upon agonist stimulation, both subtypes are internalized, and beta 2AR but not beta 1AR undergoes lysosomal degradation, the fate of each subtype being regulated by determinants in its C-tail.  相似文献   

5.
The deduced protein sequences of the mammalian adrenergic receptors (ARs) suggest that these proteins have evolved by several ancient gene duplication events. To investigate in what species these events may have occurred DNA fragments encoding the family of adrenergic receptors from human (beta 1AR and alpha 2AR) and hamster (beta 2AR and alpha 1AR) were used to detect homologous sequences in other vertebrates, invertebrates and unicellular organisms by Southern blot hybridization analysis. Sequences homologous to hamster beta 2AR were detected in lower vertebrates, invertebrates and Dictyostelium, but not in yeast or bacteria. Within vertebrates, sequences strongly homologous to human beta 1AR and human platelet alpha 2AR were confined to the higher vertebrates only. In the invertebrates, only Drosophila contained sequences homologous to hamster alpha 1AR. Our results suggest that non-mammalian species may contain receptors homologous to the mammalian adrenergic receptors and that the sequences homologous to human beta 2AR have been the most strongly conserved.  相似文献   

6.
The transition of rhodopsin from the inactive to the active state is associated with proton uptake at Glu(134) (1), and recent mutagenesis studies suggest that protonation of the homologous amino acid in the alpha(1B) adrenergic receptor (Asp(142)) may be involved in its mechanism of activation (2). To further explore the role of protonation in G protein-coupled receptor activation, we examined the effects of pH on the rate of ligand-induced conformational change and on receptor-mediated G protein activation for the beta(2) adrenergic receptor (beta(2)AR). The rate of agonist-induced change in the fluorescence of NBD-labeled, purified beta(2)AR was 2-fold greater at pH 6.5 than at pH 8, even though agonist affinity was lower at pH 6.5. This biophysical analysis was corroborated by functional studies; basal (agonist-independent) activation of Galpha(s) by the beta(2)AR was greater at pH 6.5 compared with pH 8.0. Taken together, these results provide evidence that protonation increases basal activity by destabilizing the inactive state of the receptor. In addition, we found that the pH sensitivity of beta(2)AR activation is not abrogated by mutation of Asp(130), which is homologous to the highly conserved acidic amino acids that link protonation to activation of rhodopsin (Glu(134)) and the alpha(1B) adrenergic receptor (Asp(142)).  相似文献   

7.
Pyridineethanolamine derivatives containing cyanoguanidine or nitroethylenediamine moieties were examined as human beta3 adrenergic receptor (AR) agonists. Notably, indoline derivatives 6a and 11 were potent beta3 AR agonists (beta3 EC50 = 13 and 19 nM, respectively), which showed good selectivity over binding to and minimal activation of the beta1 and beta2 ARs.  相似文献   

8.
We identify a new mechanism for the beta(1)-adrenergic receptor (beta(1)AR)-mediated regulation of human ether-a-go-go-related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3epsilon proteins is competed by wild type beta(1)AR by means of a novel interaction between this receptor and 14-3-3epsilon. The association between beta(1)AR and 14-3-3epsilon is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The beta(1)AR/14-3-3epsilon association is direct, since it can be recapitulated using purified 14-3-3epsilon and beta(1)AR fusion proteins and is abolished in cells expressing beta(1)AR phosphorylation-deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that beta(1)AR phosphorylation-deficient mutants do not recruit 14-3-3epsilon away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type beta(1)AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both beta(1)AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness.  相似文献   

9.
10.
We previously reported that the beta(1)-adrenergic receptor (beta(1)AR) associates with PSD-95 through a PDZ domain-mediated interaction, by which PSD-95 modulates beta(1)AR function and facilitates the physical association of beta(1)AR with other synaptic proteins such as N-methyl-d-aspartate receptors. Here we demonstrate that beta(1)AR association with PSD-95 is regulated by G protein-coupled receptor kinase 5 (GRK5). When beta(1)AR and PSD-95 were coexpressed with either GRK2 or GRK5 in COS-7 cells, GRK5 alone dramatically decreased the association of beta(1)AR with PSD-95, although GRK2 and GRK5 both could be co-immunoprecipitated with beta(1)AR and both could enhance receptor phosphorylation in vivo. Increasing expression of GRK5 in the cells led to further decreased beta(1)AR association with PSD-95. Stimulation with the beta(1)AR agonist isoproterenol further decreased PSD-95 binding to beta(1)AR. In addition, GRK5 protein kinase activity was required for this regulatory effect since a kinase-inactive GRK5 mutant had no effect on PSD-95 binding to beta(1)AR. Moreover, the regulatory effect of GRK5 on beta(1)AR association with PSD-95 was observed only when GRK5 was expressed together with the receptor, but not when GRK5 was coexpressed with PSD-95. Thus, we propose that GRK5 regulates beta(1)AR association with PSD-95 through phosphorylation of beta(1)AR. Regulation of protein association through receptor phosphorylation may be a general mechanism used by G protein-coupled receptors that associate via PDZ domain-mediated protein/protein interactions.  相似文献   

11.
Tetrahydroisoquinoline derivatives containing a 4-(hexylureido)benzenesulfonamide were examined as human beta3 adrenergic receptor (AR) agonists. Notably, 4,4-biphenyl derivative 9 was a 6 nM full agonist of the beta3 AR. Naphthyloxy compound 18 (beta3 EC50 = 78 nM) did not activate the beta1 and beta2 ARs at 10 microM, and showed >1000-fold selectivity over binding to the beta1 and beta2 ARs.  相似文献   

12.
This study examines the effects of adrenergic ligands, cholera toxin, forskolin, and varying levels of beta(2) adrenergic receptors (beta(2)AR) on the cellular distribution of Gs(alpha) subunits in CHO cells. Localization of Gs(alpha) was evaluated by confocal microscopy and beta(2)AR-mediated signalling was assessed by adenylyl cyclase (AC) activity. In cells expressing 0.2 pmol/mg protein beta(2)ARs (WT18), the localization of Gs(alpha) subunit was restricted to the plasma membrane region. Isoproterenol (ISO), cholera toxin or forskolin elicited redistribution of cellular Gs(alpha) so that Gs(alpha) appeared as intense spots throughout the plasma membrane as well as the cytoplasm. Exposure to a neutral beta(2)AR antagonist, alprenolol, prevented the ISO-stimulated Gs(alpha) translocation from peripheral to inner cytoplasm. In cells expressing high level of beta(2)ARs (8.2 pmol/mg) (WT4), basal and ISO-stimulated AC activities were significantly elevated when compared to the values detected in WT18 clone, suggesting a positive correlation between receptor expression and receptor-mediated signalling. Basal Gs(alpha) distribution in this group was similar to that observed in ISO-, cholera toxin-, or forskolin-stimulated WT18 clone. ISO, cholera toxin, or forskolin did not change the distribution of Gs(alpha) significantly when tested in WT4 clone. No difference in the cellular level of Gs(alpha) protein between WT18 and WT4 clones was detected. Alprenolol did not affect the distribution of Gs(alpha) in WT4 clone. ICI 118,551, a negative beta(2)AR antagonist, altered Gs(alpha) distribution from a dispersed basal pattern to a membrane-confined pattern. The latter appearance was similar to that observed in unstimulated WT18 clone. Taken together, these data suggest that: (1) enhanced beta(2)AR-Gs(alpha) coupling induced by agonist stimulation or by increased expression of beta(2)ARs remodel the cellular distribution of Gs(alpha); (2) the alteration in Gs(alpha) distribution induced by beta(2)AR overexpression provides evidence for agonist-independent interaction of beta(2)AR and Gs(alpha), that can be inhibited by a negative antagonist but not by a neutral antagonist; and (3) forskolin influences the activity state of Gs(alpha) that displays a Gs(alpha) distribution pattern comparable to that observed when Gs(alpha) is activated via beta(2)AR stimulation or directly by cholera toxin.  相似文献   

13.
14.
Following agonist stimulation, most G protein-coupled receptors become desensitized and are internalized, either to be degraded or recycled back to the cell surface. What determines the fate of a specific receptor type after it is internalized is poorly understood. Here we show that the rapidly recycling beta2 adrenergic receptor (beta2AR) binds via a determinant including the last three amino acids in its carboxyl-terminal tail to the membrane fusion regulatory protein, N-ethylmaleimide-sensitive factor (NSF). This is documented by in vitro overlay assays and by cellular coimmunoprecipitations. Receptors bearing mutations in any of the last three residues fail to interact with NSF. After stimulation with the agonist isoproterenol, a green fluorescent protein fusion of NSF colocalizes with the wild type beta2AR but not with a tail-mutated beta2AR. The beta2AR-NSF interaction is required for efficient internalization of the receptors and for their recycling to the cell surface. Mutations in the beta2AR tail that ablate NSF binding reduce the efficiency of receptor internalization upon agonist stimulation. Upon subsequent treatment of cells with the antagonist propranolol, wild type receptors return to the cell surface, while tail-mutated receptors remain sequestered. Thus, the direct binding of the beta2AR to NSF demonstrates how, after internalization, the fate of a receptor is reliant on a specific interaction with a component of the cellular membrane-trafficking machinery.  相似文献   

15.
16.
The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.  相似文献   

17.
There is a growing body of evidence that G protein-coupled receptors function in the context of plasma membrane signaling compartments. These compartments may facilitate interaction between receptors and specific downstream signaling components while restricting access to other signaling molecules. We recently reported that beta(1)- and beta(2)-adrenergic receptors (AR) regulate the intrinsic contraction rate in neonatal mouse myocytes through distinct signaling pathways. By studying neonatal myocytes isolated from beta(1)AR and beta(2)AR knockout mice, we found that stimulation of the beta(1)AR leads to a protein kinase A-dependent increase in the contraction rate. In contrast, stimulation of the beta(2)AR has a biphasic effect on the contraction rate. The biphasic effect includes an initial protein kinase A-independent increase in the contraction rate followed by a sustained decrease in the contraction rate that can be blocked by pertussis toxin. Here we present evidence that caveolar localization is required for physiologic signaling by the beta(2)AR but not the beta(1)AR in neonatal cardiac myocytes. Evidence for beta(2)AR localization to caveolae includes co-localization by confocal imaging, co-immunoprecipitation of the beta(2)AR and caveolin 3, and co-migration of the beta(2)AR with a caveolin-3-enriched membrane fraction. The beta(2)AR-stimulated increase in the myocyte contraction rate is increased by approximately 2-fold and markedly prolonged by filipin, an agent that disrupts lipid rafts such as caveolae and significantly reduces co-immunoprecipitation of beta(2)AR and caveolin 3 and co-migration of beta(2)AR and caveolin-3 enriched membranes. In contrast, filipin has no effect on beta(1)AR signaling. These observations suggest that beta(2)ARs are normally restricted to caveolae in myocyte membranes and that this localization is essential for physiologic signaling of this receptor subtype.  相似文献   

18.
Determining the role of lipid raft nanodomains in G protein-coupled receptor signaling remains fraught by the lack of assays directly monitoring rafts in native membranes. We thus combined extensive biochemical and pharmacological approaches to a nanoscale strategy based on bioluminescence resonance energy transfer (BRET) to assess the spatial and functional influence of cholesterol-rich liquid-ordered lipid nanodomains on beta(2) adrenergic receptor (beta(2)AR) signaling. The data revealed that whereas beta(2)AR did not partition within liquid-ordered lipid phase, a pool of G protein and adenylyl cyclase (AC) were sequestered in these domains. Destabilization of the liquid-ordered phase by cholesterol depletion led to a lateral redistribution of Galpha(s) and AC that favored interactions between the receptor and its signaling partners as assessed by BRET. This resulted in an increased basal and agonist-promoted beta(2)AR-stimulated cAMP production that was partially dampened as a result of constitutive protein kinase A-dependent phosphorylation and desensitization of the receptor. This restraining influence of nanodomains on beta(2)AR signaling was further substantiated by showing that liquid-ordered lipid phase stabilization using caveolin overexpression or increasing membrane cholesterol amount led to an inhibition of beta(2)AR-associated signaling. Given the emerging concept that clustering of receptors and effectors into signaling platforms contributes to the efficacy and selectivity of signal transduction, our results support a model whereby cholesterol-promoted liquid-ordered lipid phase-embedding G(s) and AC allows their lateral separation from the receptor, thus restraining the basal activity and controlling responsiveness of beta(2)AR signaling machinery within larger signaling platforms.  相似文献   

19.
20.
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号