首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5' of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.  相似文献   

3.
4.
Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B.?burgdorferi. As the interface between B.?burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B.?burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B.?burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.  相似文献   

5.
BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.  相似文献   

6.
The Lyme disease spirochete controls production of its OspC and Erp outer surface proteins, repressing protein synthesis during colonization of vector ticks but increasing expression when those ticks feed on vertebrate hosts. Early studies found that the synthesis of OspC and Erps can be stimulated in culture by shifting the temperature from 23°C to 34°C, leading to a hypothesis that Borrelia burgdorferi senses environmental temperature to determine its location in the tick-mammal infectious cycle. However, borreliae cultured at 34°C divide several times faster than do those cultured at 23°C. We developed methods that disassociate bacterial growth rate and temperature, allowing a separate evaluation of each factor''s impacts on B. burgdorferi gene and protein expression. Altogether, the data support a new paradigm that B. burgdorferi actually responds to changes in its own replication rate, not temperature per se, as the impetus to increase the expression of the OspC and Erp infection-associated proteins.  相似文献   

7.
8.
Lyme borreliosis, a multisystem disorder involving the skin, the nervous system, the heart, the joints and many other organs, is a worldwide infectious disease which is transmitted by ticks of the Ixodes complex. Most frequently diagnosis is accomplished by detection of antibodies because the Borrelia are difficult to cultivate. Present serodiagnostic methods, however, are impaired by low sensitivity and unspecific reactions. The selection of immunodominant antigens with low cross-reactivity to other bacteria should improve antibody detection. Borrelia burgdorferi proteins have been analysed for cross-reactivity with immune sera from unrelated bacteria, and sera from patients with different stages of the disease. Suitable antigens for improving serodiagnosis have been detected and are reported here. In view of the immunological heterogeneity of Borrelia proteins, sensitivity of antibody detection may possibly be increased by using recombinant antigens derived from different strains. Immunization with recombinant OspA (a flagellum-associated protein) from a North American isolate protected mice from the challenge with three North American isolates. However, for development of an effective vaccine (especially in Europe), the heterogeneity of OspA has to be considered.This paper was presented at the IUMS Symposium on New Developments in Diagnosis and Control of Infectious Diseases held in conjunction with the Eighth International Congress of Virology, Berlin, Germany, 24–31 August 1990.  相似文献   

9.
The conserved cp32 plasmid family of Borrelia burgdorferi was recently shown to be packaged into a bacteriophage particle (C. H. Eggers and D. S. Samuels, J. Bacteriol. 181:7308-7313, 1999). This plasmid encodes BlyA, a 7.4-kDa membrane-interactive protein, and BlyB, an accessory protein, which were previously proposed to comprise a hemolysis system. Our genetic and biochemical evidence suggests that this hypothesis is incorrect and that BlyA and BlyB function instead as a prophage-encoded holin or holin-like system for this newly described bacteriophage. An Escherichia coli mutant containing the blyAB locus that was defective for the normally cryptic host hemolysin SheA was found to be nonhemolytic, suggesting that induction of sheA by blyAB expression was responsible for the hemolytic activity observed previously. Analysis of the structural features of BlyA indicated greater structural similarity to bacteriophage-encoded holins than to hemolysins. Consistent with holin characteristics, subcellular localization studies with E. coli and B. burgdorferi indicated that BlyA is solely membrane associated and that BlyB is a soluble protein. Furthermore, BlyA exhibited a holin-like function by promoting the endolysin-dependent lysis of an induced lambda lysogen that was defective in the holin gene. Finally, induction of the cp32 prophage in B. burgdorferi dramatically stimulated blyAB expression. Our results provide the first evidence of a prophage-encoded holin within Borrelia.  相似文献   

10.
K Zhang  J Liu  Y Tu  H Xu  NW Charon  C Li 《Molecular microbiology》2012,85(4):782-794
In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW1, cheW2 and cheW3). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW1 and cheW3 genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non‐chemotactic. Second, immunofluorescence and cryo‐electron tomography studies suggested that both CheW1 and CheW3 are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW1 and cheW3, cheW2 is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW1 and CheW3 interact with CheA2 whereas CheW2 binds to CheA1. Collectively, our results indicate that CheW1 and CheW3 are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.  相似文献   

11.
Outer surface lipoprotein C (OspC) is a key virulence factor of Borrelia burgdorferi. ospC is differentially regulated during borrelial transmission from ticks to rodents, and such regulation is essential for maintaining the spirochete in its natural enzootic cycle. Recently, we showed that the expression of ospC in B. burgdorferi is governed by a novel alternative sigma factor regulatory network, the RpoN-RpoS pathway. However, the precise mechanism by which the RpoN-RpoS pathway controls ospC expression has been unclear. In particular, there has been uncertainty regarding whether ospC is controlled directly by RpoS (sigma(s)) or indirectly through a transactivator (induced by RpoS). Using deletion analyses and genetic complementation in an OspC-deficient mutant of B. burgdorferi, we analyzed the cis element(s) required for the expression of ospC in its native borrelial background. Two highly conserved upstream inverted repeat elements, previously implicated in ospC regulation, were not required for ospC expression in B. burgdorferi. Using similar approaches, a minimal promoter that contained a canonical -35/-10 sequence necessary and sufficient for sigma(s)-dependent regulation of ospC was identified. Further, targeted mutagenesis of a C at position -15 within the extended -10 region of ospC, which is postulated to function like the strategic C residue important for Esigma(s) binding in Escherichia coli, abolished ospC expression. The minimal ospC promoter also was responsive to coumermycin A(1), further supporting its sigma(s) character. The combined data constitute a body of evidence that the RpoN-RpoS regulatory network controls ospC expression by direct binding of sigma(s) to a sigma(s)-dependent promoter of ospC. The implication of our findings to understanding how B. burgdorferi differentially regulates ospC and other ospC-like genes via the RpoN-RpoS regulatory pathway is discussed.  相似文献   

12.
Mitophagy in yeast occurs through a selective mechanism   总被引:2,自引:0,他引:2  
The regulation of mitochondrial degradation through autophagy is expected to be a tightly controlled process, considering the significant role of this organelle in many processes ranging from energy production to cell death. However, very little is known about the specific nature of the degradation process. We developed a new method to detect mitochondrial autophagy (mitophagy) by fusing the green fluorescent protein at the C terminus of two endogenous mitochondrial proteins and monitored vacuolar release of green fluorescent protein. Using this method, we screened several atg mutants and found that ATG11, a gene that is essential only for selective autophagy, is also essential for mitophagy. In addition, we found that mitophagy is blocked even under severe starvation conditions, if the carbon source makes mitochondria essential for metabolism. These findings suggest that the degradation of mitochondria is a tightly regulated process and that these organelles are largely protected from nonspecific autophagic degradation.  相似文献   

13.
We previously described a bacteriophage of the Lyme disease agent Borrelia burgdorferi designated phiBB-1. This phage packages the host complement of the 32-kb circular plasmids (cp32s), a group of homologous molecules found throughout the genus Borrelia. To demonstrate the ability of phiBB-1 to package and transduce DNA, a kanamycin resistance cassette was inserted into a cloned fragment of phage DNA, and the resulting construct was transformed into B. burgdorferi CA-11.2A cells. The kan cassette recombined into a resident cp32 and was stably maintained. The cp32 containing the kan cassette was packaged by phiBB-1 released from this B. burgdorferi strain. phiBB-1 has been used to transduce this antibiotic resistance marker into naive CA-11.2A cells, as well as two other strains of B. burgdorferi. This is the first direct evidence of a mechanism for lateral gene transfer in B. burgdorferi.  相似文献   

14.
15.
16.
The etiologic agent of Lyme disease, Borrelia burgdorferi, is capable of circumventing the immune defense of a variety of potential vertebrate hosts. Previous work has shown that interaction of host-derived complement regulators, factor H and factor H-like protein 1 (FHL-1), with up to five complement regulator-acquiring surface proteins (CRASPs) expressed by resistant B. burgdorferi sensu lato isolates conferred complement resistance. In addition expression of CRASP-1 is directly correlated with complement resistance of Borrelia species. This work describes the functional characterization of BbCRASP-1 as the dominant factor H and FHL-1-binding protein of B. burgdorferi. The corresponding gene, zs7.a68, is located on the linear plasmid lp54 and is different from factor H-binding Erp proteins that are encoded by genes localized on circular plasmids (cp32). Deletion mutants of BbCRASP-1 were generated, and a high affinity binding site for factor H and FHL-1 was mapped to the C terminus of BbCRASP-1. Similarly, the predominant binding site of factor H and FHL-1 was localized to the short consensus repeat 7. Factor H and FHL-1 maintain their cofactor activity for factor I-mediated C3b inactivation when bound to BbCRASP-1, and factor H is up to 6-fold more efficient in mediating C3b conversion than FHL-1. In conclusion, BbCRASP-1 (i). binds the host complement regulators factor H and FHL-1 with high affinity, (ii). is the key molecule of the complement resistance of spirochetes, and (iii). is distinct from the Erp protein family. Thus, BbCRASP-1 most likely contributes to persistence of B. burgdorferi and to pathogenesis of Lyme disease.  相似文献   

17.
The effects of tazobactam, a relatively new beta-lactamase inhibitor, were investigated on growth and penicillin-binding proteins (PBPs) of Borrellia burgdorferi. A previous communication from our group demonstrated several proteins capable of binding labelled penicillin in this organism. Of these proteins, 94-kDa and 57-kDa PBPs possessed the highest affinity for penicillin and were assumed to be essential proteins involved in cell-wall synthesis. In these experiments, tazobactam was used in competition binding experiments as well as on whole spirochetes. Only the 94-kDa and 57-kDa PBPs were affected by increasing amounts of tazobactam during competition-binding experiments and growth of B. burgdorferi was also inhibited. These results may explain the in vitro activity of beta-lactamase inhibitors in general and suggest a utility for these compounds when examining PBPs with hydrolysing activity and/or organisms with beta-lactamases.  相似文献   

18.
Certain antibody Fab fragments directed against the C terminus of outer surface protein B (OspB), a major lipoprotein of the Lyme disease spirochete, Borrelia burgdorferi, have the unusual property of being bactericidal even in the absence of complement. We report here x-ray crystal structures of a C-terminal fragment of B. burgdorferi OspB, which spans residues 152-296, alone at 2.0-A resolution, and in a complex with the bactericidal Fab H6831 at 2.6-A resolution. The H6831 epitope is topologically analogous to the LA-2 epitope of OspA and is centered around OspB Lys-253, a residue essential for H6831 recognition. A beta-sheet present in the free OspB fragment is either disordered or removed by proteolysis in the H6831-bound complex. Other conformational changes between free and H6831-bound structures are minor and appear to be related to this loss. In both crystal structures, OspB C-terminal fragments form artificial dimers connected by intermolecular beta-sheets. OspB structure, stability, and possible mechanisms of killing by H6831 and other bactericidal Fabs are discussed in light of the structural data.  相似文献   

19.
Koide S  Bu Z  Risal D  Pham TN  Nakagawa T  Tamura A  Engelman DM 《Biochemistry》1999,38(15):4757-4767
Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi, is a dumbbell-shaped protein in which two globular domains are connected by a three-stranded beta-sheet segment that is solvent-exposed on both faces. Previous studies showed that the whole protein, including the single-layer beta-sheet, is highly rigid. To elucidate the folding mechanism and the role of the central beta-sheet in the formation of the rigid molecule, we investigated the equilibrium thermal denaturation reaction of OspA. We applied differential scanning calorimetry, heteronuclear NMR spectroscopy, and solution small-angle X-ray scattering (SAXS) to characterize the reaction in detail. All three techniques revealed that OspA denatures in two separable cooperative transitions. NMR measurements on OspA specifically 15N-labeled at Lys residues identified the locations of the two folding units and revealed that the C-terminal segment is less stable than the remaining N-terminal segment. The boundary between the two folding units is located within the central beta-sheet. The interconversion among the three folding states (fully folded, C-terminus unfolded, and fully denatured) is slow relative to chemical shift differences (<24 Hz), indicating that there are significant kinetic barriers in the denaturation reactions. SAXS measurements determined the radius of gyration of the native protein to be 25.0 +/- 0.3 A, which increases to 34.4 +/- 1.0 A in the first transition, and then to 56.1 +/- 1.6 A in the second transition. Thus, the intermediate state, in which the C-terminal folding unit is already denatured, is still compact. These results provide a basis for elucidating the folding mechanism of OspA.  相似文献   

20.
We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 microg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(-1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号