首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-fracture and thin-section methods were used to study tight junction formation between confluent H4-II-E hepatoma cells that were plated in monolayer culture in media with and without dexamethasone, a synthetic glucocorticoid. Three presumptive stages in the genesis of tight junctions were suggested by these studies: (1) “formation zones” (smooth P-fracture face ridges deficient in intramembranous particles), apparently matched across a partially reduced extracellular space, develop between adjacent cells; (2) linear strands and aggregates of 9–11 nm particles collect along the ridges of the formation zones. The extracellular space was always reduced when these structures were found matched with pits in gentle E-face depressions; (3) the linear arrays of particles on the ridges associate within the membranes to form the fibrils characteristic of mature tight junctions. The formation zones resemble tight junctions in terms of size, complexity and the patterns of membrane ridges. Although some of the beaded particle specialization may actually be gap junctions, it is unlikely that all can be interpreted in this way. No other membrane structures were detected that could represent developmental stages of tight junctions. Dexamethasone (at 2 × 10?6 M) apparently stimulated formation of tight junctions. Treated cultures had a greater number of formation zones and mature tight junctions, although no differences in qualitative features of the junctions were noted.  相似文献   

2.
What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.  相似文献   

3.
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro. Since it was shown that the brain endothelial tight junctions of submammalian species form P-face-associated tight junctions of the epithelial type, the question of which molecular composition underlies the morphological differences and how do these brain endothelial cells behave in vitro arose. Therefore, rat and chicken brain endothelial cells were investigated for the expression of junctional proteins in vivo and in vitro and for the morphology of the tight junctions. In order to visualize morphological differences, the complexity and the P-face association of tight junctions were quantified. Rat and chicken brain endothelial cells form tight junctions which are positive for claudin-1, claudin-5, occludin and ZO-1. In agreement with the higher P-face association of tight junctions in vivo, chicken brain endothelia exhibited a slightly stronger labeling for claudin-1 at membrane contacts. Brain endothelial cells of both species showed a significant alteration of tight junctions in vitro, indicating a loss of barrier function. Rat endothelial cells showed a characteristic switch of tight junction particles from the P-face to the E-face, accompanied by the loss of claudin-1 in immunofluorescence labeling. In contrast, chicken brain endothelial cells did not show such a switch of particles, although they also lost claudin-1 in culture. These results demonstrate that the maintenance of rat and chicken endothelial barrier function depends on the brain microenvironment. Interestingly, the alteration of tight junctions is different in rat and chicken. This implies that the rat and chicken brain endothelial tight junctions are regulated differently.  相似文献   

4.
Tight junctions of dissociated and reaggregated embryonic lung cells   总被引:2,自引:0,他引:2  
Treatment of embryonic lung tissue with trypsin resulted in clustering of intramembrane particles (IMP) and gradual disassembly of tight junctions. In dissociated single cells kept in trypsin-free medium, IMP are randomly distributed but degradation of tight junctions continue. Vesicles containing tight junction elements were observed within the cytoplasm. It is therefore assumed that tight junctions may be degraded in two ways: breakdown of elements to IMP, and endocytosis. In cells reaggregated by rotation tight junctions reassembled only in hystotypic aggregates. Cycloheximide which interferes with histotypic reaggregation prevents the reassembly of tight junctions.  相似文献   

5.
Human fetal primary tooth germs in the cap stage were fixed with a glutaraldehyde-formaldehyde mixture, and formative processes of tight and gap junctions of the inner enamel epithelium and preameloblasts were examined by means of freeze-fracture replication. Chains of small clusters of particles on the plasma membrane P-face of the inner enamel epithelium and preameloblasts were the initial sign of tight junction formation. After arranging themselves in discontinuous, linear arrays in association with preexisting or forming gap junctions, these particles later began revealing smooth, continuous tight junctional strands on the plasma membrane P-face and corresponding shallow grooves of a similar pattern on the E-face. Although they exhibited evident meshwork structures of various extents at both the proximal and distal ends of cell bodies, they formed no zonulae occludentes. Small assemblies of particles resembling gap junctions were noted at points of cross linkage of tight junctional strands; but large, mature gap junctions no longer continued into the tight junction meshwork structure. Gap junctions first appeared as very small particle clusters on the plasma membrane P-face of the inner enamel epithelium. Later two types of gap junctions were recognized: one consisted of quite densely aggregated particles with occasional particle-free areas, and the other consisted of relatively loosely aggregated particles with particle-free areas and aisles. Gap junction maturation seemed to consist in an increase of particle numbers. Fusion of gap junctions in the forming stage too was recognized. The results of this investigation suggest that, from an early stage in their development, human fetal ameloblasts possess highly differentiated cell-to-cell interrelations.  相似文献   

6.
Junctional complexes have been investigated in the epiblast of young chick embryos by examination of freeze-fracture replicas and of sections of comparable specimens stained with lanthanum nitrate. By means of freeze-fracture, tight junctions were shown to be present in the unincubated embryo (stage 1 of Hamburger and Hamilton). The number of ridges or grooves was found to vary between 2 and 10 near the dorsal border, whereas isolated ridges were found more ventrally. Lanthanum was unable to penetrate between the cells in the region of the dorsally situated tight junctions. Similar tight junctions were found in incubated embryos (stage 3) examined by both techniques. Tight junctions were also seen in cleavage (pre-laying) embryos examined in section. Gap junctions were extremely uncommon in unincubated embryos, though occasional aggregates of gap junction particles were seen on the lateral cell membranes close to the dorsal surface. In only one instance were associated pits visible. By contrast, gap junctions were more frequently encountered by stage 3, and these junctions possessed both pits and particles. Desmosomes were never seen in the freeze-fracture replicas at either stages 1 or 3, though structures which might be developing desmosomes were visible in sections. The functions of both the tight and gap junctions in the young chick embryo are discussed. The results are also considered in relation to recent theories about the way in which gap junctions are formed.  相似文献   

7.
The peritoneal mesothelium of mouse embryos (12 to 18 day of gestation) was studied by freeze-fracture and in sections in order to reveal the initial formation of the tight junctions. Freeze-fracture observations showed three types of tight junctions. Type I consists of belt-like meshworks of elevations on the P face and of shallow grooves on the E face. No tight junctional particle can be seen either on the elevations or in the grooves. Type II shows rows of discontinuous particles on the elevations on the P face. Type III consists of strands forming ridges on the P face. On the E face, the grooves of Type II and III appear to be narrower and sharper than those of Type I. Quantitatively, Type I junctions are most numerous during the early stages (day 12-13) of embryonic development, while Type III junctions become more common in the later stages, and are the only type seen by day 18. Observations on sections, however, fail to distinguish between the three types. The results suggest that an initial sign of tight junction formation is close apposition of the two cell membranes in the junctional domain, without tight junctional particles. Later, the particles appear to be incorporated in the tight junctions and the strands form by fusion of the particles.  相似文献   

8.
Summary The rat brain capillary was studied with freeze-fracture technique. The attached plasmalemmal vesicles were quite few in number on the luminal front and sometimes numerous on the contraluminal side. The fracture appearance of some tight junctions showed interconnecting ridges on face A and complementary furrows devoid of particles on face B, comparable to the common tight junction in the normal epithelia. Other tight junctions revealed a preferential disposition of quasicontinuous rows of particles on shallow furrows of face B, resembling the tight junctional strands of capillary endothelium in non-cerebral tissues. Either behavior is probably due to the difference in the fracture plane around the single fibril. In addition, the tight junctional strand could surround the perimeter of the endothelial cell completely although the exposed strand of tight junction was limited in length.  相似文献   

9.
In vivo assembly of tight junctions in fetal rat liver   总被引:13,自引:10,他引:3       下载免费PDF全文
Examination of glutaraldehyde-fixed, freeze-fractured livers from 14-15-day rat fetuses provided the basis for the following observations. Membrane particles align in otherwise poorly particulated areas of the presumptive pericanalicular plasma membrane (A face), frequently forming a discontinuous "honey-comb" network joining small particle islands. Even at this early stage, contiguous B-fracture faces contain furrows, rather than rows of pits, distinguishing the linear particle aggregates on the A face as developing tight junctions rather than gap junctions. Short segments of these linear arrays merge with smooth ridges clearly identifiable as segments of discontinuous tight junctions. With the continuing confluence of particulate and smooth ridge segments, mature tight junctions become fully appreciable. We conclude that tight junctions form de novo by the alignment and fusion of separate particles into beaded ridges which, in turn, become confluent and are transformed into continuous smooth ones. At 21 days of fetal life, most of the images of assembly have disappeared, and the liver reveals well-formed bile canaliculi sealed by mature tight junctions.  相似文献   

10.
Intercellular junctions have been investigated in epidermis and pharyngeal epithelium of larvae and adults of various species of tunicates with conventional and freeze-fracture techniques. Gap and tight junctions were found, similar to those observed in vertebrate tissues. Gap junctions were frequent in glandular epithelia and in larval tissues. They were interpreted as ways of intercellular communication in these developing tissues. They were also particularly numerous in Phallusia pharyngeal cells. Tight junctions were found preferentially in adult pharyngeal and epidermal epithelia, where they were arranged in strands of distinct particles forming a belt-like network at the apical part of cells. These junctions were interpreted as providing a tight barrier between the internal medium and the external environment. In larvae, tight junctions were found only between epidermal cells of the tail. These junctions thus characterized completely differentiated tissues, where they might play, in tunicates and in vertebrates, the same role as septate junctions do in invertebrates.  相似文献   

11.
Application of carbon tetrachloride produced a progressive proliferation of tight junctions in the rat liver. This system proved to be rapid and highly reproducable and affords the opportunity for tracing the fate of tight junctions in freeze-fracture replicas, facilitating investigations on their formation and function. Beginning on day one carbon tetrachloride treatments resulted in the progressive loosening and fragmentation of the junctional meshwork. After three to four days the membrane outside the zonulae occludentes was extensively filled with proliferated discrete junctional elements often forming complex configurations. From the fifth day on the zonulae occludentes were restricted again predominantly around the bile canaliculus margins. But the junctional meshwork of the zonulae occludentes remained loosened in comparison to those in the control rats. It could be shown that tight junction proliferation on the lateral surface of the plasmalemma occurred both through de novo formation from discrete centers of growth by addition of intramembranous particles and through reorganization of preexistent junctional strands of the fragmented zonulae occludentes bodies. Whereas the large gap junctions close associated with the zonulae occludentes remained more or less unaffected during the experiments, small gap junctions increased in number after five days and were located at the margin or in the tight junction domain. It is assumed that the degeneration of the tight junctions served as a pool for intramembranous particles which form the gap junctions. The results of these observations are discussed in relation to those obtained in other systems.  相似文献   

12.
Previous electron microscope freeze-fracture and tracer studies have revealed that intercellular junctions in the retinal pigment epithelium (RPE) of Royal College of Surgeons (RCS) rats with inherited retinal dystrophy [5] break down between three and six postnatal weeks [6, 7]. In this study quantitative computer techniques were used to analyze the freeze-fracture changes in the dystrophic RPE. The following parameters were measured: length of tight junctional strands/micron2; number of tight junctional strand anastomoses/micron2; number of gap junctional aggregates/micron2; area of gap junctional aggregates/micron2; and density of background intramembrane particles/micron2. At three postnatal weeks, the dystrophic junctional complex membrane is similar to normal, but at 10 weeks and later there are dramatic decreases in tight junctional strand length/micron2 and number of anastomoses/micron2, as well as in the number/micron2 and area of gap junctions/micron2, while the density of background particles/micron2 is dramatically increased. Correlational analysis revealed that changes in gap and tight junctions were significantly related to each other and to the increase in background particle density. The diameter of background particles within the normal and post-breakdown dystrophic junctions was measured in order to see whether the dispersal of gap and tight junctional particles (8-10 nm) into the surrounding membrane contributes to the increased particle density. These measures showed that background particles in all size ranges were more numerous in the dystrophic RPE, but that the largest increase was in the smallest diameter particles (6-7 nm). Thus, while gap and tight junctional sized particles contribute to the increase, particles from other sources may also be involved. Particle density of apical and basal membranes in the normal and in the 10 week and older dystrophic RPE was analyzed to study the effects of tight junctional breakdown on the distribution of intramembrane particles. These measures showed that particle density was greater basally than apically in the normal RPE and that particle density in both membranes decreased slightly in the dystrophic RPE, but that their ratio remained unchanged. It has been shown previously that even a single intact tight junctional strand is sufficient to maintain differences in particle density between apical and basal surfaces [14, 15] and in the majority of abnormal dystrophic junctional complexes at least one tight junctional strand remains intact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Summary Ependymal cells in the ventricular wall and in several circumventricular organs of the rat were compared by means of freeze-fracturing. In principle, tight junctions and orthogonal arrays of particles (OAP) do not coexist in the cells bordering the ventricular wall: (1) Ordinary ependymal cells of the rat possess OAP and are devoid of tight junctions. (2) Epithelial cells of the rat choroid plexus are connected by tight junctions; OAP are lacking here. In some cases, however, tight junctions and OAP coexist in the same cell. In the boundary zone between choroid plexus and ependyma of the rat, the density of OAP is very low, whereas the tight junctions are well developed. In the subfornical and the subcommissural organ (SCO) of the rat both structures are poorly developed; in the SCO they occur segregated in different membranous areas. An overview of the literature confirms that tight junctions and OAP mostly exclude each other. The possibility that in astrocytes and ependymal cells tight junctions may have been replaced by OAP during phylogeny is briefly discussed.Dedicated to Professor A. Bohle on the occasion of his 65th birthdayPresent address: Dept. of Biol., Univ. of Oregon, Eugene, Oregon, 97403, USA  相似文献   

14.
In pancreatic lobules incubated in Ca2+-free Krebs-Ringer bicarbonate solution +0.5 mM EGTA tight junctions are first disarrayed and then break up into fasciae occludentes and small fibrillar fragments, which move laterally in the plane of the plasmalemma and often wind up around the gap junctions. The interruption of the continuity of tight junctions results in the disappearance of the difference in intramembranous particle density between the lateral and luminal regions of the plasmalemma. These results are consistent with the interpretation of tight junctions as dynamic structures, probably resulting from a specific polymerization of intramembranous particles and confirm that tight junctions might have a role in establishing and maintaining the regional differences of the plasmalemma.  相似文献   

15.
VARIATIONS IN TIGHT AND GAP JUNCTIONS IN MAMMALIAN TISSUES   总被引:68,自引:42,他引:26       下载免费PDF全文
The fine structure and distribution of tight (zonula occludens) and gap junctions in epithelia of the rat pancreas, liver, adrenal cortex, epididymis, and duodenum, and in smooth muscle were examined in paraformaldehyde-glutaraldehyde-fixed, tracer-permeated (K-pyroantimonate and lanthanum), and freeze-fractured tissue preparations. While many pentalaminar and septilaminar foci seen in thin-section and tracer preparations can be recognized as corresponding to well-characterized freeze-fracture images of tight and gap junction membrane modifications, many others cannot be unequivocally categorized—nor can all freeze-etched aggregates of membrane particles. Generally, epithelia of exocrine glands (pancreas and liver) have moderate-sized tight junctions and large gap junctions, with many of their gap junctions basal to the junctional complex. In contrast, the adrenal cortex, a ductless gland, may not have a tight junction but does possess large gap junctions. Mucosal epithelia (epididymis and intestine) have extensive tight junctions, but their gap junctions are not as well developed as those of glandular tissue. Smooth muscle contains numerous small gap junctions The incidence, size, and configuration of the junctions we observed correlate well with the known functions of the junctions and of the tissues where they are found.  相似文献   

16.
Interendothelial membrane contacts in different segments of brain blood vessels were investigated by the freeze-etching technique. The study demonstrated that the endothelial cells of the pre- and postcapillary segments were coupled by elaborate zonulae occludentes. These tight junction formations encompassed gap junctions of different sizes and distribution. The globules of the pre- and postcapillary tight junctions revealed a great fragility which led to an atypical distribution of the sealing elements. In the "typical" brain capillaries the endothelial cells were connected by continuous tight junctions. In contrast to the structural continuity of these formations the fenestrated segments of capillaries in the choroid plexus and area postrema demonstrated discontinuous fasciae occludentes. They were composed of rows of individual particles which should be regarded primarily as focal in nature.  相似文献   

17.
Tight junction of sinus endothelial cells of the rat spleen   总被引:1,自引:0,他引:1  
Uehara K  Miyoshi M 《Tissue & cell》1999,31(6):555-560
The fine structure of the tight junctions between sinus endothelial cells of the rat spleen and the permeability of such sinus endothelial cells were examined by transmission electron microscopy, using freeze-fracture, triton extraction, and lanthanum-tracer techniques. In freeze-fracture replicas, the segmented strands and grooves of the tight junctions were frequently observed on the basolateral surfaces of the sinus endothelial cells irrespective of the location of the ring fiber. There were one or two wavy-strands or grooves which were, for the most part, oriented parallel to the long cell axis thus forming networks at places. In addition, some strands or grooves were discontinuous while some networks of the junctional strands were not closed. These strands also occasionally lacked intramembranous particles in the tight junctions. The junctional strands run apicobasically at certain sites. In the vertical sections of the sinus endothelial cells treated with lanthanum nitrate, although no tight junctions were observed wherever the endothelial cells were apposed, most of them were situated on the basal part of the lateral surfaces of the adjacent endothelial cells. Several fusions of the junctional membranes were observed in a vertical section of the lateral surfaces of the adjacent endothelial cells. The intercellular spaces of the adjacent endothelial cells except for the fusion of the junctional membranes, were electron dense and the infiltration of lanthanum nitrate was found not to be interrupted by these tight junctions. Based on these observations, the molecular 'fence' and paracellular 'gate' functions of the tight junctions in the sinus endothelial cells are discussed.  相似文献   

18.
The structure and function of intercellular tight (occluding) junctions, which constitute the anatomical basis for highly regulated interfaces between tissue compartments such as the blood-testis and blood-brain barriers, are well known. Details of the synthesis and assembly of tight junctions, however, have been difficult to determine primarily because no model for study of these processes has been recognized. Primary cultures of brain capillary endothelial cells are proposed as a model in which events of the synthesis and assembly of tight junctions can be examined by monitoring morphological features of each step in freeze-fracture replicas of the endothelial cell plasma membrane. Examination of replicas of non-confluent monolayers of endothelial cells reveals the following intramembrane structures proposed as 'markers' for the sequential events of synthesis and assembly of zonulae occludentes: development of surface contours consisting of elongate terraces and furrows (valleys) orientated parallel to the axis of cytoplasmic extensions of spreading endothelial cells, appearance of small circular PF face depressions (or volcano-like protrusions on the EF face) that represent cytoplasmic vesicle-plasma membrane fusion sites, which are positioned in linear arrays along the contour furrows, appearance of 13-15 nm intramembrane particles at the perimeter of the vesicle fusion sites, and alignment of these intramembrane particles into the long, parallel, anastomosed strands characteristic of mature tight junctions. These structural features of brain endothelial cells in monolayer culture constitute the morphological expression of: reshaping the cell surface to align future junction-containing regions with those of adjacent cells, delivery and insertion of newly synthesized junctional intramembrane particles into regions of the plasma membrane where tight junctions will form, and aggregation and alignment of tight junction intramembrane particles into the complex interconnected strands of mature zonulae occludentes. The distribution of filipin-sterol complex-free regions on the PF intramembrane fracture face of junction-forming endothelial plasmalemmae corresponds precisely to the furrows, aligned vesicle fusion sites and anastomosed strands of tight junctional elements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Freeze-fracture was used to study Anura Amphibia primordial germ cells (PGCs) from the time when they have invaded genital ridges until the time when sexual differentiation has begun. We observed tight junctions with a variety of configurations including linear, macular, and extensive occluding cross-linking complexes. True gap junctions were not observed. Rod-shaped particles were found disseminated among particles on the P fracture faces of the germ cells.  相似文献   

20.
The process of cell fusion of Madin-Darby canine kidney (MDCK) cells by HVJ (Sendai virus) was investigated to determine whether the HVJ particles were directly associated with the site of membrane fusion. Confluent monolayer cultures of MDCK cells are sealed together by tight junctions on the apices of their lateral membranes, so added virus particles can be adsorbed only to the apical surfaces of the cells. After incubation with HVJ at 37 degrees C for 30 min, the cells still appeared mononucleate and unfused by light microscopy, but electron microscopic examination showed that fusion at the lateral membranes had occurred below the tight junctions. Furthermore, when fluorescein isothiocyanate (FITC)-labeled macromolecules, which cannot pass across the gap junctions, were injected into the cells at this stage, labeled macromolecules were found to diffuse into the adjacent cells. These findings strongly suggest that cell fusion was initiated in the lateral membrane, a region distinct from the site of adsorbed HVJ particles. Thus, the virus particles were not directly associated with the fusion site, but induced fusion of the lateral membranes indirectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号