首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Women with germline mutations in BRCA1 have a 40% risk of developing ovarian cancer by age 70 and are also predisposed to cancers of the fallopian tubes. Given that ovulatory activity is a strong risk factor for sporadic ovarian cancer, we hypothesized that reduced BRCA1 expression might predispose to gynecological cancers indirectly, by influencing ovarian granulosa cells. These cells secrete sex steroids that control the ovulatory cycle and influence the growth of ovarian epithelial tumors. Granulosa cells also secrete mullerian inhibiting substance (MIS), a hormone that inhibits both the formation of female reproductive organs in male embryos and the proliferation of ovarian epithelial tumor cells. We tested this hypothesis by using the Cre-lox system to inactivate the Brca1 gene in mouse ovarian granulosa cells. A truncated form of the Fsh receptor promoter served as the Cre driver. Here, we show that indeed, inactivation of the Brca1 gene in granulosa cells led to the development of cystic tumors in the ovaries and uterine horns. These tumors carried normal Brca1 alleles, supporting the view that Brca1 may influence tumor development indirectly, possibly through an effector secreted by granulosa cells.  相似文献   

2.
The BRCA1 tumor suppressor has been implicated in many cellular pathways, but the mechanisms by which it suppresses tumor formation are not fully understood. In vivo BRCA1 forms a heterodimeric complex with the related BARD1 protein, and its enzymatic activity as a ubiquitin ligase is largely dependent upon its interaction with BARD1. To explore the genetic relationship between BRCA1 and BARD1, we have examined the phenotype of Bard1-null mice. These mice become developmentally retarded and die between embryonic day 7.5 (E7.5) and E8.5. Embryonic lethality results from a severe impairment of cell proliferation that is not accompanied by increased apoptosis. In the absence of p53, the developmental defects associated with Bard1 deficiency are partly ameliorated, and the lethality of Bard1; p53-nullizygous mice is delayed until E9.5. This result, together with the increased chromosomal aneuploidy of Bard1 mutant cells, indicates a role for Bard1 in maintaining genomic stability. The striking similarities between the phenotypes of Bard1-null, Brca1-null, and double Bard1; Brca1-null mice provide strong genetic evidence that the developmental functions of Brca1 and Bard1 are mediated by the Brca1/Bard1 heterodimer.  相似文献   

3.
Both human and mouse cells express an alternatively spliced variant of BRCA1, BRCA1-Delta11, which lacks exon 11 in its entirety, including putative nuclear localization signals. Consistent with this, BRCA1-Delta11 has been reported to reside in the cytoplasm, a localization that would ostensibly preclude it from playing a role in the nuclear processes in which its full-length counterpart has been implicated. Nevertheless, the finding that murine embryos bearing homozygous deletions of exon 11 survive longer than embryos that are homozygous for Brca1 null alleles suggests that exon 11-deleted isoforms may perform at least some of the functions of Brca1. We have analyzed both the full-length and the exon 11-deleted isoforms of the murine Brca1 protein. Our results demonstrate that full-length murine Brca1 is identical to human BRCA1 with respect to its cell cycle regulation, DNA damage-induced phosphorylation, nuclear localization, and association with Rad51. Surprisingly, we show that endogenous Brca1-Delta11 localizes to discrete nuclear foci indistinguishable from those found in wild-type cells, despite the fact that Brca1-Delta11 lacks previously defined nuclear localization signals. However, we further show that DNA damage-induced phosphorylation of Brca1-Delta11 is significantly reduced compared to full-length Brca1, and that gamma irradiation-induced Rad51 focus formation is impaired in cells in which only Brca1-Delta11 is expressed. Our results suggest that the increased viability of embryos bearing homozygous deletions of exon 11 may be due to expression of Brca1-Delta11 and suggest an explanation for the genomic instability that accompanies the loss of full-length Brca1.  相似文献   

4.
Half of all familial breast cancers are due to mutation in the BRCA1 gene. However, despite its importance, attempts to model BRCA1-induced disease in the mouse have been disappointing. Heterozygous Brca1 knockout mice do not develop mammary tumors and homozygous knockout mice die during embryogenesis from ill-defined causes. Sequence analysis has shown that the coding region, genomic organization, and regulatory sequences of the human and mouse genes are not well conserved. This has raised the question of whether the mouse can serve as an effective model for functional analysis of the human BRCA1 gene. To address this question we have introduced a bacterial artificial chromosome containing the human BRCA1 gene into the germline of Brca1 knockout mice. Surprisingly, we have found that the embryonic lethality of Brca1 knockout mice is rescued by the human transgene. We also show that expression of human BRCA1 transgene mirrors the endogenous murine gene. Our "humanized" transgenic mice can serve as a model system for functional analyses of the human BRCA1 gene. Published 2001 Wiley-Liss, Inc.  相似文献   

5.
In this report we describe the isolation of an isogenic pair of Brca1+/+ and Brca1-/-murine mammary epithelial cells (MMECs). These cells were isolated from Brca1conditional knock out mice which contained loxP sites flanking exon 11 of the Brca1gene (Brca1fl/fl) and then immortalized by infection with HPV-16E6 retrovirus to degradep53 protein. Brca1-/- MMECs were generated by deletion of exon 11 followingtransduction of Brca1fl/fl MMECs with a retroviral vector expressing Cre recombinase.Brca1-deficiency rendered MMECs sensitive to cis-platinum (II) diamine dichloride(CDDP) and methylmethane sulfonate (MMS). The Brca1+/+ and Brca1-/- MMECS is theonly known pair of isogenic mammary epithelial cell lines. The understanding of themechanisms of the CDDP sensitivity of the BRCA1-deficient mammary epithelial cellswould be very important in understanding how BRCA1-deficiency plays out in tissuespecific breast cancer chemotherapy. These studies support the role of BRCA1 in theCDDP-induced and MMS-induced DNA damage and repair by p53-independentpathways.  相似文献   

6.
Alternative splicing in the BRCA1 locus generates multiple protein products including BRCA1-Delta11, which is identical to the BRCA1 full-length isoform (BRCA1-FL) except for the absence of exon 11. Mutation analysis using gene targeting to create null mutations or disrupt BRCA-FL has provided much of our understanding of BRCA1 functions; however, targeted mutation of specific short forms of BRCA1 has not been reported. To understand the physiologic functions of BRCA1-Delta11, we used a knock-in approach that blocks alternative splicing between exons 10 and 12 to prevent the formation of this form of BRCA1. We showed that homozygous mutant mice (Brca1(FL/FL)) were born at a Mendelian ratio without obvious developmental defects. However, the majority of Brca1(FL/FL) female mice showed mammary gland abnormalities and uterine hyperplasia after one year of age with spontaneous tumor formation. Cultured Brca1(FL/FL) cells exhibited abnormal centrosome amplification and reduction of G(1) population that was accompanied by accumulation of cyclin E and cyclin A. Accumulation of cyclin E was also found in epithelial layers of dilated ducts and hyperproliferative lobular regions in the mammary glands of Brca1(FL/FL) mice. These observations provide evidence that BRCA1 splicing variants are involved in BRCA1 functions in modulating G(1)/S transition, centrosome duplication, and repressing tumor formation.  相似文献   

7.
Epithelial ovarian cancer (EOC) is thought to arise from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. Using mice with conditional expression of Brca1, we inactivated Brca1 in the murine OSE and demonstrate that this inactivation results in the development of preneoplastic changes, such as hyperplasia, epithelial invaginations, and inclusion cysts, which arise earlier and are more numerous than in control ovaries. These changes resemble the premalignant lesions that have been reported in human prophylactic oophorectomy specimens from women with BRCA1 germline mutation. We also report that inactivation of Brca1 in primary cultures of murine OSE cells leads to a suppression of proliferation due to increased apoptosis that can be rescued by concomitant inactivation of p53. These observations, along with our finding that these cells display an increased sensitivity to the DNA-damaging agent cisplatin, indicate that loss of function of Brca1 in OSE cells impacts both cellular growth control and DNA-damage repair which results in altered cell behavior manifested as morphological changes in vivo that arise earlier and are more numerous than what can be attributed to ageing.  相似文献   

8.
The BRCA1 tumor suppressor has been implicated in the maintenance of chromosomal stability through homology-directed repair of DNA double-strand breaks. Much of the BRCA1 in cells forms a heterodimeric complex with a structurally related protein BARD1. We report that expression of truncated mouse or human BARD1 peptides capable of interacting with Brca1 results in a homologous-repair deficiency. Repair is mildly reduced in Brca1 wild-type cells and severely reduced in cells that harbor a Brca1 splice product deleted for exon 11. Nuclear localization of the Brca1 or BARD1 peptides is not compromised, implying that the repair deficiency is caused by a more direct effect on repair. The tumor suppressor activity of BRCA1 may require the participation of BARD1 to maintain chromosome integrity through the homologous-repair pathway.  相似文献   

9.
The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1(+/Delta11)) with Parp1-null mice. We show that Brca1(Delta11/Delta11);Parp1(-/-) embryos die before embryonic (E) day 6.5, whereas Brca1(Delta11/Delta11) embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1(Delta11/Delta11) embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1(Delta11/Delta11);Parp1(+/-) MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.  相似文献   

10.
Germline mutations of BRCA1 predispose women to breast and ovarian cancers. However, the downstream mediators of BRCA1 function in tumor suppression remain elusive. We found that human BRCA1-associated breast cancers have lower levels of SIRT1 than their normal controls. We further demonstrated that mammary tumors from Brca1 mutant mice have low levels of Sirt1 and high levels of Survivin, which is reversed by induced expression of Brca1. BRCA1 binds to the SIRT1 promoter and increases SIRT1 expression, which in turn inhibits Survivin by changing the epigenetic modification of histone H3. Absence of SIRT1 blocks the regulation of Survivin by BRCA1. Furthermore, we demonstrated that activation of Sirt1 and inhibition of Survivin expression by resveratrol elicit a more profound inhibitory effect on Brca1 mutant cancer cells than on Brca1-wild-type cancer cells both in vitro and in vivo. These findings suggest that resveratrol treatment serves as an excellent strategy for targeted therapy for BRCA1-associated breast cancer.  相似文献   

11.
Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches.  相似文献   

12.
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.  相似文献   

13.
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.  相似文献   

14.
15.
16.
17.
The tumor suppressor BRCA1 contains multiple functional domains that interact with many proteins. After DNA damage, BRCA1 is phosphorylated by CHK2 at serine 988, followed by a change in its intracellular location. To study the functions of CHK2-dependent phosphorylation of BRCA1, we generated a mouse model carrying the mutation S971A (S971 in mouse Brca1 corresponds to S988 in human BRCA1) by gene targeting. Brca1(S971A/S971A) mice were born at the expected ratio without a developmental defect, unlike previously reported Brca1 mutant mice. However, Brca1(S971A/S971A) mice suffered a moderately increased risk of spontaneous tumor formation, with a majority of females developing uterus hyperplasia and ovarian abnormalities by 2 years of age. After treatment with DNA-damaging agents, Brca1(S971A/S971A) mice exhibited several abnormalities, including increased body weight, abnormal hair growth pattern, lymphoma, mammary tumors, and endometrial tumors. In addition, the onset of tumor formation became accelerated, and 80% of the mutant mice had developed tumors by 1 year of age. We demonstrated that the Brca1(S971A/S971A) cells displayed reduced ability to activate the G(2)/M cell cycle checkpoint upon gamma-irradiation and to stabilize p53 following N-methyl-N'-nitro-N-nitrosoguanidine treatment. These observations suggest that Chk2 phosphorylation of S971 is involved in Brca1 function in modulating the DNA damage response and repressing tumor formation.  相似文献   

18.
Brca1 is required for DNA repair by homologous recombination (HR) and normal embryonic development. Here we report that deletion of the DNA damage response factor 53BP1 overcomes embryonic lethality in Brca1-nullizygous mice and rescues HR deficiency, as measured by hypersensitivity to polyADP-ribose polymerase (PARP) inhibition. However, Brca1,53BP1 double-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), indicating that BRCA1 has an additional role in DNA crosslink repair that is distinct from HR. Disruption of the nonhomologous end-joining (NHEJ) factor, Ku, promotes DNA repair in Brca1-deficient cells; however deletion of either Ku or 53BP1 exacerbates genomic instability in cells lacking FANCD2, a mediator of the Fanconi anemia pathway for ICL repair. BRCA1 therefore has two separate roles in ICL repair that can be modulated by manipulating NHEJ, whereas FANCD2 provides a key activity that cannot be bypassed by ablation of 53BP1 or Ku.  相似文献   

19.
In this report, we have analyzed the protein encoded by the murine Brca2 locus. We find that murine Brca2 shares multiple properties with human BRCA2 including its regulation during the cell cycle, localization to nuclear foci, and interaction with Brca1 and Rad51. Murine Brca2 stably interacts with human BRCA1, and the amino terminus of Brca2 is sufficient for this interaction. Exon 11 of murine Brca2 is required for its stable association with RAD51, whereas the carboxyl terminus of Brca2 is dispensable for this interaction. Finally, in contrast to human BRCA2, we demonstrate that carboxyl-terminal truncations of murine Brca2 localize to the nucleus. This finding may explain the apparent inconsistency between the cytoplasmic localization of carboxyl-terminal truncations of human BRCA2 and the hypomorphic phenotype of mice homozygous for similar carboxyl-terminal truncating mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号