首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Hekimi  P. Boutis    B. Lakowski 《Genetics》1995,141(4):1351-1364
We carried out a genetic screen for viable maternal-effect mutants to identify genes with a critical function relatively early in development. This type of mutation would not have been identified readily in previous screens for viable mutants and therefore could define previously unidentified genes. We screened 30,000 genomes and identified 41 mutations falling into 24 complementation groups. We genetically mapped these 24 loci; only two of them appear to correspond to previously identified genes. We present a partial phenotypic characterization of the mutants and a quantitative analysis of the degree to which they can be maternally or zygotically rescued.  相似文献   

2.
The deaf waddler (dfw) mutation is a model system to study the biology of neuroepithelial hearing defects in mice. Here we describe the identification and characterization of a new allele of deaf waddler (dfw2J) and present evidence for a hearing susceptibility locus (mdfw) that interacts withdfw.We found that CBy-dfw2J/dfw2Jhomozygotes exhibit no discernible auditory brainstem responses (ABR) to sound pressure level stimuli up to 100 dB, indicating a profound deafness. Interestingly, the ABR in CBy-dfw2J/+ heterozygotes is also abnormal, showing age-dependent elevated thresholds characteristic of a progressive hearing loss. When outcrossed onto the CAST/Ei strain, only 24% of the F2 CBy/CAST-dfw2J/+ heterozygotes displayed increased ABR thresholds, suggesting that a second locus, controlling hearing function indfw2J/+ heterozygotes, was segregating in the CBy/CAST-dfw2Jintercross. By linkage analysis, we localized this locus (mdfw) to Chromosome 10, between markersD10Mit127andD10Mit185,within a 4.0 ± 1.1 cM genetic interval. All CBy/CAST-dfw2J/+ heterozygotes that develop hearing loss are homozygous for the CBy-derived recessive allele (mdfwC). In contrast, CBy/CAST-dfw2J/+ heterozygotes expressing even a single copy of the CAST/Ei-derivedmdfwallele (Mdfw) retain their normal hearing function. Our results reveal an epistatic relationship between themdfwand thedfwgenes and provide a model system to study nonsyndromic hearing loss in mice.  相似文献   

3.
J. H. Nadeau  D. Varnum    D. Burkart 《Genetics》1989,122(4):895-903
The t complex on chromosome 17 of the house mouse is an exceptional model for studying the genetic control of transmission ratio, gametogenesis, and embryogenesis. Partial haplotypes derived through rare recombination between a t haplotype and its wild-type homolog have been essential in the genetic analysis of these various properties of the t complex. A new partial t haplotype, which was derived from the complete tw71 haplotype and which is called tw71Jr1, was shown to have unexpected effects on tail length and unique recombination breakpoints. This haplotype, either when homozygous or when heterozygous with the progenitor tw71 haplotype, produced short-tailed rather than normal-tailed mice on certain genetic backgrounds. Genetic analysis of this exceptional haplotype showed that the recombination breakpoints were different from those leading to any other partial t haplotype. Based on this haplotype, a model is proposed that accounts for genetic interactions between the brachyury locus (T), the t complex tail interaction (tct) locus, and their wild-type homolog(s) that determine tail length. An important part of this model is the hypothesis that the tct locus, which enhances the tail-shortening effect of T mutations, is in fact at least two, genetically separable genes with different genetic activities. Genetic analysis of parental and recombinant haplotypes also suggests that intrachromosomal recombination involving an inverted duplicated segment can account for the variable orientation of loci within an inverted duplication on wild-type homologs of the t haplotype.  相似文献   

4.
5.
Genetic Change in Mutations at the T/t-Locus in the Mouse   总被引:1,自引:0,他引:1       下载免费PDF全文
Bennett D  Dunn LC  Artzt K 《Genetics》1976,83(2):361-372
Recessive lethal or semilethal alleles at the T/t locus in the mouse generate new t-variants, with characteristics different from the parent allele at a rate of about 10-3. Almost invariably the variant chromosome carries marker genes derived from the opposite parental chromosome. New t-mutations obtained in this way are sometimes recessive lethals that are indistinguishable from those in already known complementation groups. Most derived t-mutations are viable, however. This paper summarizes data on the rate and types of variants produced by members of each of the six lethal complementation groups, and by semilethal alleles. It appears that particular complementation groups preferentially generate certain types of variants, and that in general, the pattern of variant production runs "uphill," that is, to less abnormal states. The data are compatible with the hypothesis that t-mutations represent some extent of altered chromosome and that variants are produced by loss of abnormal material.  相似文献   

6.
A mouse kidney cDNA clone, pMK174, identifies restriction fragment length polymorphisms (RFLPs) that map to two unlinked loci. One, designated D17Rp17, has been mapped near quaking, (qk), on chromosome 17 using three sets of recombinant inbred (RI) strains. A study of several t haplotypes resulted in the identification of t-specific alleles of D17Rp17 that map to the proximal half of the t complex. Neither t-specific nor wild-type D17Rp17 alleles are present in chromosomes carrying either the T Orleans (TtOrl) or the T hairpin tail (Thp) deletions. Comparison with other molecular markers indicates that pMK174 identifies a new proximal t complex locus, Rp17. The second locus identified by pMK174, termed D4Rp18, is tentatively assigned to chromosome 4 by mouse-Chinese hamster somatic cell hybrid analysis.  相似文献   

7.
The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.  相似文献   

8.
The site-specific recombinase IntI1 found in class 1 integrons catalyzes the excision and integration of mobile gene cassettes, especially antibiotic resistance gene cassettes, with a site-specific recombination system. The integron integrase belongs to the tyrosine recombinase (phage integrase) family. The members of this family, exemplified by the lambda integrase, do not share extensive amino acid identities, but three invariant residues are found within two regions, designated box I and box II. Two conserved residues are arginines, one located in box I and one in box II, while the other conserved residue is a tyrosine located at the C terminus of box II. We have analyzed the properties of IntI1 variants carrying point mutations at the three conserved residues of the family in in vivo recombination and in vitro substrate binding. We have made four proteins with mutations of the conserved box I arginine (R146) and three mutants with changes of the box II arginine (R280); of these, MBP-IntI1(R146K) and MBP-IntI1(R280K) bind to the attI1 site in vitro, but only MBP-IntI1(R280K) is able to excise cassettes in vivo. However, the efficiency of recombination and DNA binding for MBP-IntI1(R280K) is lower than that obtained with the wild-type MBP-IntI1. We have also made two proteins with mutations of the tyrosine residue (Y312), and both mutant proteins are similar to the wild-type fusion protein in their DNA-binding capacity but are unable to catalyze in vivo recombination.Integrons are DNA elements that capture genes, especially antibiotic resistance genes, by a site-specific recombination system (32). The recombination system consists of a DNA integrase (Int) and two types of recombination sites, attI and attC (59-base element). The integrase gene (int) is located in the 5′ conserved segment of the integron structure (Fig. (Fig.1)1) and is a member of the tyrosine recombinase family (1, 4, 13, 23, 24). Three types of integrases, sharing around 50% identity among themselves, have been identified; they define integron classes 1, 2, and 3 (30). The 5′ conserved segment found in class 1 integrons also contains a promoter region responsible for the expression of inserted cassettes (11, 21) and the recombination site attI1 (31). The 3′ conserved segment of the class 1 integrons includes an ethidium bromide resistance determinant (qacEΔ1), a sulfonamide resistance gene (sulI), an open reading frame (ORF5) of unknown function, and further sequences that differ from one integron to another (5, 6, 28). The 3′ conserved segment of class 2 integrons includes transposition genes (20) while that of class 3 integrons has not yet been studied (2). The variable region, located between the two conserved segments, usually contains antibiotic resistance genes; In0 contains no inserted genes while In21 possesses eight cassettes with ten genes (or ORFs) in this region (5, 16). These genes are part of mobile cassettes which include a recombination site, attC, that differs from one gene to another (18, 33). Incoming genes must be associated with an attC to be recognized by the integron integrase and are preferentially inserted at the recombination site attI1 (11). Cassettes are excised as circular intermediates and integrated at core sites by the action of the integrase (810). The core site, defined as GTTRRRY, makes up the 3′ end of attI1 and attC, with the crossover taking place between the G and the first T (19). Antibiotic selection pressure can reveal cassette rearrangements in which a given resistance is nearest the promoter and thus most strongly expressed (10). Open in a separate windowFIG. 1General structure of class 1 integrons. Cassettes are inserted in the integron variable region by a site-specific recombination mechanism. The attI1 site is shown by a black circle, core sites are represented by ovals, the attC site is indicated by a black rectangle, and promoters are denoted by P. intIl, integrase gene; qacEΔ1, antiseptic resistance gene; sulI, sulfonamide resistance gene; orf5, gene of unknown function.Site-specific recombination, unlike homologous recombination, is characterized by relatively short, specific DNA sequences and requires only limited homology of the recombining partners (12). Site-specific recombination is an entirely conservative process since all DNA strands that are broken (two per exchange site) are rejoined in a process that involves neither ATP nor DNA synthesis. Homology alignments of site-specific recombinases assign them to two families: the resolvase family, named after the TnpR proteins encoded by the transposons γδ and Tn3, and the integrase family. The integrase family includes over 140 members to date, but they are highly diversified proteins (13, 23). Members of this family, which include the well-studied λ integrase, recombine DNA duplexes by executing two consecutive strand breakage and rejoining steps and a topoisomerization of the reactants. The first pair of exchanges form a four-way Holliday junction and the second pair resolve the junction to complete the recombination. The integrase nucleophile is a conserved tyrosine that becomes associated with a phosphate group on DNA. The cleavage sites on each DNA duplex are separated by 6 to 8 bp with a 5′ stagger, and the tyrosine joins to the 3′ phosphate (17).The initial definition of the integrase family was based on comparisons of seven sequences, and three invariant residues were identified: an HXXR cluster and a Y residue (4). Alignment of 28 sequences identified a fourth invariant position, occupied by an arginine residue (1). These four conserved residues are found in two boxes located in the second half of the protein. A recent analysis has shown that the conserved histidine is present in 136 of the 147 members (93%); this residue is then not conserved in all members of the family (13). Another recent analysis has identified three patches of residues located around box I, which seem to be important in the secondary structure of these proteins (23). In this study, we analyzed the properties of several mutants of the conserved residues R146, R280, and Y312 of the integron integrase IntI1 in in vivo recombination and in vitro substrate binding.

Construction of plasmids overexpressing mutant MBP-IntI1 fusion proteins.

The plasmids encoding various mutants of MBP-IntI1 were constructed by PCR using pLQ369 (50 ng) as a template (15). Two primer pairs, designed with the OLIGO software package (version 4.1; National Biosciences, Plymouth, Minn.), were used to construct each set of mutants. The R146 mutants were constructed with an XcmI-BamHI primer pair [IntI1(R146)-XcmI, 5′-TTCACCAGCTTCTGTATGGAACGGGCATG(A/G)(A/T)AATCAG-3′; IntI1(R146)-BamHI, 5′-CCGGATCCCTACCTCTCACT-3′], the R280 mutants were constructed with an NruI-XmnI primer pair [IntI1(R280)-NruI, 5′-AGCCGTCGCGAACGAGTGC(C/T)(C/T)GAGGG-3′; IntI1(R280)-XmnI, 5′-ACCCCTAATGAAGTGGTTCGTATCC-3′], and the Y312 mutants were constructed with a AatII-ScaI primer pair [IntI1(Y312)-AatII, 5′-ATTCCGACGTCTCTACTACGATGATTT(C/T)CACGC-3′; pLQ369-ScaI, 5′-ATGCTTTTCTGTGACTGGTG-3′] (restriction sites within primer sequences are underlined). PCR conditions were 10 min at 94°C, three cycles consisting of 45 s at 94°C, 45 s at 47°C, and 90 s at 72°C, 30 cycles consisting of 45 s at 94°C, 45 s at 60°C (50°C for Y312 mutants), and 90 s at 72°C, and a final elongation step of 10 min at 72°C. The XcmI, NruI, and AatII primers were degenerate in one or two positions, so that a single primer could give all mutants. Mutant PCR fragments were digested and cloned directly into pLQ369 digested with the same enzymes, except for the R146 mutant fragments that were subcloned into pLQ364 at first. New mutant PCR fragments were then amplified on these subclones, using IntI1(R146)-BamHI and IntI1(R280)-XmnI primers. These mutant PCR fragments were cleaved with BamHI and XmnI, and the resulting fragments were cloned into pLQ369. This avoids the necessity of partial digestion of pLQ369 with XcmI. Mutant clones were digested with restriction endonucleases and sequenced to determine the mutation.

In vivo recombination.

Mutant MBP-IntI1 clones were introduced into Escherichia coli TB1 {F′ araΔ(lac-proAB) rpsL (Strr) [φ80dlacΔ(lacZ)M15] hsdR(rKmK)} containing pLQ428 by transformation (Fig. (Fig.22 and Table Table1).1). E. coli TB1 cells containing pLQ428 and one of the MBP-IntI1 mutants were grown at 37°C for 3 h in Luria-Bertani medium. Excision of the aacA1-ORFG and/or ORFH cassettes was induced by the overexpression of the malE-intI1 gene by using 0.3 mM isopropyl-β-d-thiogalactopyranoside (IPTG; Sigma Chemical Co.) and by incubation at 37°C for another 3 h. Cell culture was done in the presence of 50 μg of ampicillin per ml, 15 μg of amikacin per ml, and 50 μg of chloramphenicol per ml. Plasmid DNA was then prepared from 5-ml cultures with the Perfect Prep DNA extraction kit (Mandel Corporation). In order to determine the capacity of mutant MBP-IntI1 proteins to excise aacA1-ORFG and/or ORFH cassettes of In21, we used PCR primers pACYC184-5′ (5′-TGTAGCACCTGAAGTCAGCC-3′) and pACYC184-3′ (5′-ATACCCACGCCGAAACAAG-3′) (Fig. (Fig.2,2, primers 1 and 2) to detect the reduction of pLQ428 length. PCR conditions were 10 min at 94°C, 30 cycles consisting of 1 min at 94°C, 1 min at 60°C, and 5 min at 72°C, and a final elongation step of 10 min at 72°C. A major PCR fragment can be seen in each lane containing a DNA preparation from a mutant clone (Fig. (Fig.3,3, lanes 2 to 9). This band is 2,499 bp long and, as determined by restriction enzyme digestions, represents the pLQ428 clone without any cassette excision (data not shown). This band is also observed in the negative control, which is the pMAL-c2 vector without any gene fused to malE (Fig. (Fig.3,3, lane 12). Open in a separate windowFIG. 2Representation of plasmids used in this study. The positions of the three invariant residues of the integrase family are indicated, along with restriction sites used to construct mutant proteins. Core sites are represented by black circles, and attCs are shown by white boxes. The numbered arrows represent the PCR primers used to detect excision events, pACYC184-5′ (1) and pACYC184-3′ (2). bla, gene encoding β-lactamase; cat, gene encoding chloramphenicol acetyltransferase; intIl, gene encoding the integron integrase (IntI1); malE, gene encoding the maltose binding protein (MBP); ori, origin of replication; Ptac, tac promoter; Ptet, tetracycline promoter. Only relevant restriction sites are indicated.

TABLE 1

Plasmids used in this study
PlasmidCharacteristic(s)aReference or source
pLQ3632,190-bp EcoRI-HincII fragment of pLQ161 cloned in pLQ402 (Apr)16
pLQ3641,027-bp NcoI-BamHI PCR fragment amplified on pLQ860 and cloned in pET-3d (Apr)This study
pLQ3691,019-bp NdeI-BamHI PCR fragment modified to create a blunt-end 5′-ATG and cloned in pMAL-c2 cut with XmnI-BamHI (Apr)15
pLQ376pLQ369 MBP-IntI1(R146K) (Apr)This study
pLQ377pLQ369 MBP-IntI1(R146E) (Apr)This study
pLQ378pLQ369 MBP-IntI1(R146I) (Apr)This study
pLQ379pLQ369 MBP-IntI1(R146V) (Apr)This study
pLQ388pLQ369 MBP-IntI1(R280G) (Apr)This study
pLQ390pLQ369 MBP-IntI1(R280E) (Apr)This study
pLQ391pLQ369 MBP-IntI1(R280K) (Apr)This study
pLQ393pLQ369 MBP-IntI1(Y312S) (Apr)This study
pLQ394pLQ369 MBP-IntI1(Y312F) (Apr)This study
pLQ4282,133-bp EcoRI (filled in)-BglII fragment of pLQ363 cloned in pACYC184 cut with EcoRV-BamHI (Akr Cmr)This study
pLQ8602,900-bp BamHI fragment of pVS1 cloned in pTZ19R (Apr Sulr)5
Open in a separate windowaAkr, Apr, and Cmr, resistance to amikacin, ampicillin, and chloramphenicol. Open in a separate windowFIG. 3Electrophoresis of PCR products obtained with the pACYC184 primer pair and 100 ng of DNA preparations from overexpressed cultures on a 1% agarose gel. Lane 1, 1-kb DNA ladder (Gibco BRL); lane 2, DNA preparation of pLQ428-pLQ377 (R146E); lane 3, pLQ428-pLQ378 (R146I); lane 4, pLQ428-pLQ376 (R146K); lane 5, pLQ428-pLQ379 (R146V); lane 6, pLQ428-pLQ390 (R280E); lane 7, pLQ428-pLQ388 (R280G); lane 8, pLQ428-pLQ391 (R280K); lane 9, pLQ428-pLQ394 (Y312F); lane 10, pLQ428-pLQ393 (Y312S); lane 11, pLQ428-pLQ369 (wild type); lane 12, pLQ428-pMAL-c2 (MBP).The 2,499-bp PCR product was not obtained in the reaction containing the wild-type MBP-IntI1-expressing clone pLQ369 (Fig. (Fig.3,3, lane 11), indicating that there were no remaining full-length pLQ428 molecules. This shows that the wild-type fusion protein is very efficient in site-specific recombination and that all pLQ428 clones have undergone an excision of one or both cassettes. In this PCR, we observed two major bands of 1,341 and 889 bp. The 1,341-bp PCR product was digested with restriction enzymes to show that it represents a pLQ428 clone which has lost the aacA1-ORFG cassette (data not shown). The 889-bp band was also digested with restriction enzymes to show that it represents a pLQ428 clone which has lost both aacA1-ORFG and ORFH cassettes (data not shown). These two PCR products are also observed in the reaction containing the mutant clone pLQ391, which expresses the MBP-IntI1(R280K) fusion protein. This mutant protein is, however, less efficient than the wild-type protein, as seen by the intensity of the PCR products (Fig. (Fig.3,3, lane 8). We were not able to detect a PCR product of 2,047 bp, corresponding to the excision of the ORFH cassette alone; this is not surprising since this event has been shown in another study to be rare (16). It is possible to observe another band in pLQ428-pLQ391 (R280K) and pLQ428-pLQ369 (wild type) PCRs (Fig. (Fig.3,3, lanes 8 and 11); this PCR product is 1,100 bp long and probably represents a recombination event at a secondary site. Restriction enzyme digestions were done on this product, but we were unable to identify its origin. This product results from an event mediated by the integron integrase since it is seen only in reactions containing active proteins. An 1,800-bp PCR band is also present in the negative control and in all PCRs containing a mutant clone. This product appears to be nonspecific, and the fact that it is not seen in the PCR containing the pLQ428-pLQ369 (wild-type) clones probably results from the PCR being more favorable to smaller PCR products.

In vitro substrate binding.

The experiments described above demonstrate that only one of our mutants of IntI1 protein is able to catalyze in vivo recombination. Can all mutant proteins recognize and bind to the IntI1 recombination site in a manner similar to the wild-type protein? To investigate this question, we used purified fusion proteins and a gel retardation assay with the complete attI1 site (5′ site) of the integron. MBP-IntI1 fusion proteins were purified as suggested by New England Biolabs. The concentration of the purified fusion protein was determined by using the Bradford protein assay (Bio-Rad). The protein solution was then made 20% in glycerol and stored at −80°C. The purity of MBP-IntI1 was evaluated as >90% by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (data not shown). Binding reactions were done with labeled 5′-site DNA fragments (20,000 cpm, 0.25 pmol), incubated with different concentrations of MBP-IntI1 in a 10-μl volume containing 10 mM HEPES (K+, pH 8.0), 60 mM KCl, 4 mM MgCl2, 100 μM EDTA (pH 8.0), 100 μg of bovine serum albumin per ml, 250 μM dithiothreitol, 100 ng of poly(dI-dC), and 10% glycerol. Reaction mixtures were incubated at room temperature for 15 min prior to electrophoresis through 4 or 5% prerun, nondenaturing polyacrylamide gels buffered with 0.5× Tris-borate-EDTA. Dried gels were subjected to autoradiography. The wild-type fusion protein and native IntI1 were shown to lead to the same four distinct complexes (I, II, III, and IV) with this DNA substrate (Fig. (Fig.4)4) (15). These complexes represent the binding of four IntI1 molecules to four different sites in the attI1 site (15). Figure Figure44 shows results obtained with nine mutants of the MBP-IntI1 fusion protein. We observed that MBP-IntI1(R146E), MBP-IntI1(R146I), and MBP-IntI1(R146V) lost their ability to bind to the attI1 site, as no complexes are seen in the gel retardation experiment (Fig. (Fig.4A).4A). However, MBP-IntI1(R146K) formed four IntI1-DNA complexes with the 5′ site DNA fragment. The band pattern and the intensity observed with this mutant protein are similar to those observed with the wild-type protein, suggesting that MBP-IntI1(R146K) and MBP-IntI1 bind DNA with similar affinities. Open in a separate windowFIG. 4Binding of mutant MBP-IntI1 fusion proteins purified from E. coli TB1 to the 5′-site DNA fragment containing the complete attI1 site of the In2 integron (from nucleotide −96 to nucleotide +71, relative to the G residue of the core site as position 0). (A) MBP-IntI1(R146) mutants; (B) MBP-IntI1(R280) mutants; (C) MBP-IntI1(Y312) mutants. A purified labeled fragment was incubated with different concentrations of mutant fusion proteins. Free DNA (F) and protein-DNA complexes (I, II, III, and IV) were separated on 4 or 5% polyacrylamide gels and are indicated by arrows. Lanes 1, free DNA; lanes 2 through 7, purified fusion protein at 250, 375, 500, 12.5, 37.5, and 62.5 nM, respectively. The wild-type (WT) lanes in panel C were from a separate gel.Competition with a specific fragment with a 30-fold excess of unlabeled DNA competed away all four complexes, while a 100-fold excess of a nonspecific unlabeled DNA fragment did not compete away any complexes, indicating their specificity (data not shown) (15). We observed that MBP-IntI1(R280G) and MBP-IntI1(R280E) lost their ability to bind the 5′-site DNA fragment, while the MBP-IntI1(R280K) could still bind the attI1 site (Fig. (Fig.4B).4B). However, the band pattern obtained with this mutant protein is weaker than that obtained with the wild-type integrase. For example, at a protein concentration of 250 nM MBP-IntI1(R280K) (lane 2), we observed the formation of complexes I, II, and III, with a stronger intensity for the fastest-migrating complexes, while the intensity of the fourth complex was very weak. At the same concentration of the wild-type protein, we observed the formation of all four complexes, with a stronger intensity for the slowest-migrating complexes and no unbound DNA. These results show that MBP-IntI1(R280K) binds the attI1 site with a lower affinity than the wild-type fusion protein. As shown in Fig. Fig.4C,4C, both MBP-IntI1(Y312F) and MBP-IntI1(Y312S) lead to the formation of four complexes that migrate similarity to those obtained with wild-type MBP-IntI1, as judged by the gel migration of these complexes. The band pattern observed shows that the binding affinity of these mutant proteins is the same as or even better than that of the wild-type protein.

Relationships with other members of the family.

We found that MBP-IntI1 recombinase in which Arg-146 has been changed to lysine [MBP-IntI1(R146K)] by PCR mutagenesis cannot excise cassettes but can bind to the attI1 site with the same efficiency as the wild-type fusion protein. However, MBP-IntI1(R146I), MBP-IntI1(R146E), and MBP-IntI1(R146V) mutant proteins have completely lost both phenotypes. These findings are different from those for other members of the family. The only mutant protein of the lambda integrase at this residue [λ(R212Q)] binds the core site partially and is not able to catalyze in vivo or in vitro recombination (22). Mutants of the Cre recombinase with a change at this residue [Cre(R173K)] bind DNA as well as the wild-type protein but cannot catalyze in vivo or in vitro recombination (1). Mutants of Flp [Flp(R191K) and Flp(R191E)] bind FRT recombination sites as well as the wild-type protein but cannot carry out in vivo or in vitro recombination, except for the Flp(R191K) protein, which has shown slight activity in in vivo recombination (Table (Table2)2) (7, 14, 25). Therefore, the Cre(R173K) and Flp(R146K) mutants have the same phenotype as the MBP-IntI1(R146K) protein. However, the Flp(R191E) mutant protein shows efficient DNA binding while MBP-IntI1(R146E) does not bind to the attI1 site. We interpret these results according to the charge of the Arg-146 residue. The positively charged side chain of this residue makes contact with the DNA, which is negatively charged. This contact is probably important for the good conformation of the protein molecule in positioning the tyrosine residue to perform recombination. When this residue is exchanged for a lysine, DNA contacts are still able to take place because of the charge of the residue, but the side chain is smaller and the lysine is probably not able to position the tyrosine to catalyze recombination. We think that the charge of this residue is very important in the formation of DNA-protein complexes in the integron system, since all other MBP-IntI1 mutants tested are unable to bind DNA. This observation differs from those for Flp, because even when the wild-type residue was replaced by a negatively charged one, it could still bind DNA as well as the wild-type protein (Table (Table2).2).

TABLE 2

Mutational analysis of IntI1 and corresponding residues of other recombinases from the Int family
RecombinaseMutationDNA bindingRecombinationReference(s)
λIntR212QYesaNo22
λIntY342FYesNo22, 26
FlpR191EYesNo7
FlpR191KYesYes7, 14
FlpR308GYesNo27
FlpR308KYesYesa27
FlpY343FYesNo29
FlpY343SYesNo29
CreR173KYesNo1
P2R272KNDbNo23
XerCY275FYesNo3
XerDY279FYesNo3
IntI1R146ENoNoThis study
IntI1R146INoNoThis study
IntI1R146KYesNoThis study
IntI1R146VNoNoThis study
IntI1R280ENoNoThis study
IntI1R280GNoNoThis study
IntI1R280KYesYesaThis study
IntI1Y312FYesNoThis study
IntI1Y312SYesNoThis study
Open in a separate windowaLess efficient than the wild-type protein. bND, not determined. We have also made proteins with mutations at position 280; these were MBP-IntI1(R280E), MBP-IntI1(R280G), and MBP-IntI1(R280K). We found that the MBP-IntI1(R280K) mutant protein binds the attI1 site and excises integron cassettes with a lower efficiency than the wild-type MBP-IntI1, while MBP-IntI1(R280E) and MBP-IntI1(R280G) have completely lost both phenotypes. The Flp(R308K) mutant protein has been shown to bind DNA as well as the wild-type protein, but it recombines DNA with a lower efficiency than wild-type Flp (27). Another mutant protein of Flp [Flp(R308G)] has also been shown to bind DNA as well as the wild-type protein, but it was unable to catalyze in vivo or in vitro recombination (27). These results show that Flp(R308K) and MBP-IntI1(R280K) act similarly but that the other Flp mutant [Flp(R308G)] can bind DNA while the MBP-IntI1 mutant [MBP-IntI1(R280G)] cannot (Table (Table2).2). We also think that the positive charge of this residue is important for the binding of the recombinase to DNA, but Arg-280 does not seem to be implicated in the positioning of the tyrosine residue, since the MBP-IntI1(R280K) mutant protein can perform recombination.We found that MBP-IntI1(Y312S) and MBP-IntI1(Y312F) mutant proteins bind the attI1 site with the same efficiency as the wild-type protein but are not able to catalyze in vivo recombination. As expected, these results are the same as those obtained with the lambda integrase [λ(Y342F)], the XerC and XerD recombinases [XerC(Y275F) and XerD(Y279F)], and the Flp recombinases [Flp(Y343S) and Flp(Y343F)] (Table (Table2)2) (3, 22, 26, 29). The loss of the catalytic activity of the MBP-IntI1(Y312F) mutant protein is not surprising, since the hydroxyl group of the tyrosine, which is responsible for the nucleophilic attack of the DNA at the recombination site, is not present on the phenylalanine residue. The phenotype of MBP-IntI1(Y312S) indicates that the conformation of the tyrosine residue is important for the good activity of the recombinase, because even if the serine residue has a hydroxyl group, it is not able to catalyze recombination. These results indicate that the integron integrase IntI1 uses the hydroxyl group of the conserved tyrosine (Y312) to catalyze site-specific recombination, like other members of the family. However, in vitro recombination using this mutant protein needs to be done to confirm this.These results of point mutations show that mutations of the conserved arginines by nonpositively charged residues abolish substrate recognition, unlike the corresponding mutants of other members of the family. However, further mutational analysis, such as of residues around and in patch III, would be interesting, since only integron integrases contain more residues in this region than other members of the family (23). In vitro recombination assays with purified mutant proteins also need to be done in order to study thoroughly the mechanism of site-specific recombination in integrons.  相似文献   

9.
Mutations in PHF6 are the cause of B?rjeson-Forssman-Lehman syndrome (BFLS), an X-linked intellectual disability (XLID) disorder, and both T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). The PHF6 gene encodes a protein with two plant homeodomain (PHD)-like zinc finger domains. As many PHD-like domains function to target chromatin remodelers to post-translationally modified histones, this suggests a role for PHF6 in chromatin regulation. However, PHD domains are usually found in association with a catalytic domain, a feature that is lacking in PHF6. This distinct domain structure and the minimal information on its cellular function prompted us to perform a proteomic screen to identify PHF6 binding partners. We expressed recombinant Flag-tagged PHF6 in HEK 293T cells for coimmunoprecipitation, and analyzed the purified products by mass spectrometry. We identified proteins involved in ribosome biogenesis, RNA splicing, and chromatin regulation, consistent with PHF6 localization to both the nucleoplasm and nucleolus. Notably, PHF6 copurified with multiple constituents of the nucleosome remodeling and deacetylation (NuRD) complex, including CHD4, HDAC1, and RBBP4. We demonstrate that this PHF6-NuRD complex is not present in the nucleolus but is restricted to the nucleoplasm. The association with NuRD represents the first known interaction for PHF6 and implicates it in chromatin regulation.  相似文献   

10.
11.
The recessive male sterile mutation haync2 of Drosophila melanogaster fails to complement certain beta 2-tubulin and alpha-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by haync2, which may act as a structural poison. Based on this observation, we have isolated ten new mutations that revert the failure to complement between haync2 and B2tn. The revertants tested behaved as intragenic mutations of hay in recombination tests, and fell into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than haync2 in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the haync2 allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywirenc2 product to interact structurally with microtubules. Flies heterozygous for the original haync2 allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.  相似文献   

12.
The C. elegans gene unc-89 encodes a set of mostly giant polypeptides (up to 900 kDa) that contain multiple immunoglobulin (Ig) and fibronectin type 3 (Fn3), a triplet of SH3-DH-PH, and two protein kinase domains. The loss of function mutant phenotype and localization of antibodies to UNC-89 proteins indicate that the function of UNC-89 is to help organize sarcomeric A-bands, especially M-lines. Recently, we reported that each of the protein kinase domains interacts with SCPL-1, which contains a CTD-type protein phosphatase domain. Here, we report that SCPL-1 interacts with LIM-9 (FHL), a protein that we first discovered as an interactor of UNC-97 (PINCH) and UNC-96, components of an M-line costamere in nematode muscle. We show that LIM-9 can interact with UNC-89 through its first kinase domain and a portion of unique sequence lying between the two kinase domains. All the interactions were confirmed by biochemical methods. A yeast three-hybrid assay demonstrates a ternary complex between the two protein kinase regions and SCPL-1. Evidence that the UNC-89/SCPL-1 interaction occurs in vivo was provided by showing that over-expression of SCPL-1 results in disorganization of UNC-89 at M-lines. We suggest two structural models for the interactions of SCPL-1 and LIM-9 with UNC-89 at the M-line.  相似文献   

13.
Paul E. Mains 《Genetics》1986,114(4):1225-1237
Mouse t haplotypes often carry embryonic lethal mutations. Sixteen complementation groups are known, but the viability of the heterozygotes between them is often less than 100%. It has been reported that cis heterozygotes of two lethal mutations showed better viability than trans heterozygotes. This could indicate that the mutations were part of the same functional unit, even though they map up to 15 cM apart. However, the tw5 and tw12 haplotypes in our colony did not show a statistically significant decrease in viability when combined in trans. The cis-trans analysis was repeated using two independent chromosomes, derived by recombination between the tw5 and the tw12 haplotypes to provide the two lethal mutations in cis. Two independent chromosomes, representing the reciprocal recombination event, supplied the corresponding wild-type alleles in cis. These chromosomes were combined in the four pairwise combinations, and male/female reciprocal crosses were done. The cis heterozygotes showed a decrease, rather than an increase, in viability in seven of the eight cases. These results probably reflect effects of unrelated background genes. The lethal mutations, instead of being functionally related, may have occurred in a random, unrelated set of genes and may confer a selective advantage to t haplotypes found in wild populations.  相似文献   

14.
Glia maturation factor (GMF) is a member of the actin-depolymerizing factor (ADF)/cofilin family. ADF/cofilin promotes disassembly of aged actin filaments, whereas GMF interacts specifically with Arp2/3 complex at branch junctions and promotes debranching. A distinguishing feature of ADF/cofilin is that it binds tighter to ADP-bound than to ATP-bound monomeric or filamentous actin. The interaction is also regulated by phosphorylation at Ser-3 of mammalian cofilin, which inhibits binding to actin. However, it is unknown whether these two factors play a role in the interaction of GMF with Arp2/3 complex. Here we show using isothermal titration calorimetry that mammalian GMF has very low affinity for ATP-bound Arp2/3 complex but binds ADP-bound Arp2/3 complex with 0.7 μm affinity. The phosphomimetic mutation S2E in GMF inhibits this interaction. GMF does not bind monomeric ATP- or ADP-actin, confirming its specificity for Arp2/3 complex. We further show that mammalian Arp2/3 complex nucleation activated by the WCA region of the nucleation-promoting factor N-WASP is not affected by GMF, whereas nucleation activated by the WCA region of WAVE2 is slightly inhibited at high GMF concentrations. Together, the results suggest that GMF functions by a mechanism similar to that of other ADF/cofilin family members, displaying a preference for ADP-Arp2/3 complex and undergoing inhibition by phosphorylation of a serine residue near the N terminus. Arp2/3 complex nucleation occurs in the ATP state, and nucleotide hydrolysis promotes debranching, suggesting that the higher affinity of GMF for ADP-Arp2/3 complex plays a physiological role by promoting debranching of aged branch junctions without interfering with Arp2/3 complex nucleation.  相似文献   

15.
16.
Starting with the lambda pRE-strain lambda ctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, lambda dya2 ctr1 cy3008 and lambda dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations in cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'. --The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII-mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A----G mutation four bases before the initial AUG codon, and cII3059, a GUU----GAU (Val2----Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD.  相似文献   

18.
We have inserted a yeast nuclear DNA fragment bearing the TRP1 gene and its associated origin of DNA replication, ARS1, into the functional mitochondrial chromosome of a strain carrying a chromosomal trp1 deletion. TRP1 was not phenotypically expressed within the organelle. However, this Trp(-) strain readily gave rise to respiratory competent Trp(+) clones that contained the TRP1/ARS1 fragment, associated with portions of mitochondrial DNA (mtDNA), replicating in their nuclei. Thus the Trp(+) clones arose as a result of DNA escaping from mitochondria and migrating to the nucleus. We have isolated 21 nuclear mutants in which the rate of mtDNA escape is increased by screening for increased rates of papillation to Trp(+). All 21 mutations were recessive and fell into six complementation groups, termed YME1-YME6. In addition to increasing the rate of mtDNA escape, yme1 mutations also caused a heat-sensitive respiratory deficient phenotype at 37° and a cold-sensitive growth defect on complete glucose medium at 14°. While the other yme mutations had no detectable growth phenotypes, synergistic interactions were observed in two double mutant combinations: a yme1, yme2 double mutant failed to respire at 30° and a yme4, yme6 double mutant failed to respire at all temperatures tested. None of the respiratory defects were caused by loss of functional mtDNA. These findings suggest that yme1, yme2, yme4 and yme6 mutations alter mitochondrial functions and thereby lead to an increased rate of DNA escape from the organelle.  相似文献   

19.
Only five of the nine subunits of human eukaryotic translation initiation factor 3 (eIF3) have recognizable homologs encoded in the Saccharomyces cerevisiae genome, and only two of these (Prt1p and Tif34p) were identified previously as subunits of yeast eIF3. We purified a polyhistidine-tagged form of Prt1p (His-Prt1p) by Ni2+ affinity and gel filtration chromatography and obtained a complex of ≈600 kDa composed of six polypeptides whose copurification was completely dependent on the polyhistidine tag on His-Prt1p. All five polypeptides associated with His-Prt1p were identified by mass spectrometry, and four were found to be the other putative homologs of human eIF3 subunits encoded in S. cerevisiae: YBR079c/Tif32p, Nip1p, Tif34p, and YDR429c/Tif35p. The fifth Prt1p-associated protein was eIF5, an initiation factor not previously known to interact with eIF3. The purified complex could rescue Met-tRNAiMet binding to 40S ribosomes in defective extracts from a prt1 mutant or extracts from which Nip1p had been depleted, indicating that it possesses a known biochemical activity of eIF3. These findings suggest that Tif32p, Nip1p, Prt1p, Tif34p, and Tif35p comprise an eIF3 core complex, conserved between yeast and mammals, that stably interacts with eIF5. Nip1p bound to eIF5 in yeast two-hybrid and in vitro protein binding assays. Interestingly, Sui1p also interacts with Nip1p, and both eIF5 and Sui1p have been implicated in accurate recognition of the AUG start codon. Thus, eIF5 and Sui1p may be recruited to the 40S ribosomes through physical interactions with the Nip1p subunit of eIF3.  相似文献   

20.
We have identified and characterized the phenotype of a new insertional mutation in one line of transgenic mice. Mice carrying this mutation, which we have designated TgN(Imusd)370Rpw, display undulations of the vertebrae giving rise to a novel kinky-tail phenotype. Molecular characterization of the insertion site indicates that the transgene integration has occurred without any substantial alterations in the structure of the host sequences. Using probes that flank the insertion site, we have mapped the mutation to chromosome 5 near the semidominant mutation, thick tail (Tht). Thick tail does not complement the TgN(Imusd)370Rpw mutation; compound mutants containing one copy of each mutation display a more severe phenotype than either mutation individually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号