首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alterations of the mitochondrial DNA (mtDNA) are implicated in various pathological conditions. In this study, we used denaturing high performance liquid chromatography (DHPLC) as a method to rapidly screen the entire mtDNA for mutations. Overlapping DNA fragments, amplified by one single cycling protocol from frozen pre-formulated PCR mixes, were subjected to DHPLC analysis. Single DHPLC injections of fragments yielded straightforward interpretation of results with a detection limit down to 1% mtDNA heteroplasmy. Furthermore, collection and re-amplification of low degree heteroduplex peak-fractions allowed sequence analysis of mtDNA mutations down to the detection limit of the DHPLC method. In order to demonstrate that the method has diagnostic value, we analyzed and confirmed known mtDNA mutations in patient samples.  相似文献   

2.
In this report we describe a simple and rapid protocol for reliable quantitation of mitochondrial DNA (mtDNA) mutations, which is basically a modification of the traditional polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) analysis technique. Up to now, the PCR/RFLP method has been of limited use for the accurate determination of ratios of mutant and wild type molecules, largely owing to the formation of heteroduplex molecules by PCR and incompleteness of restriction digestion. In order to overcome this problem, we have introduced a single-step primer extension reaction using Vent(R)(exo-) DNA polymerase and a fluorescence-labeled primer to the standard assay. The labeled homoduplex molecules are then digested with a restriction endonuclease, and the nucleic acids fractionated on an automated DNA sequencer equipped with GENESCAN analysis software. The amount of mutant mtDNA is readily estimated from fluorescence intensities of the wild-type and mutant mtDNA fragments corrected for incomplete digestion as monitored by a homologous control fragment. The accuracy of the improved protocol was determined by constructing standard curves obtained from defined mixtures of genomic DNA containing homoplasmic wild-type and mutant mtDNA. The expected values were obtained, with an observed correlation coefficient of 0.997 and a typical variability of +/-5% between repeated measurements. Further validation of the protocol is provided by the screening of five patients and unaffected subjects carrying the guanine to adenine transition at the nucleotide 3460 of the mitochondrial genome responsible for the mitochondrial disorder of Leber's hereditary optic neuropathy.  相似文献   

3.
Mitochondrial DNA (mtDNA) mutations have been involved in disease, aging and cancer and furthermore exploited for evolutionary and forensic investigation. When investigating mtDNA mutations the peculiar aspects of mitochondrial genetics, such as heteroplasmy and threshold effect, require suitable approaches which must be sensitive enough to detect low-level heteroplasmy and, precise enough to quantify the exact mutational load. In order to establish the optimal approach for the evaluation of heteroplasmy, six methods were experimentally compared for their capacity to reveal and quantify mtDNA variants. Drawbacks and advantages of cloning, Fluorescent PCR (F-PCR), denaturing High Performance Liquid Chromatography (dHPLC), quantitative Real-Time PCR (qRTPCR), High Resolution Melting (HRM) and 454 pyrosequencing were determined. In particular, detection and quantification of a mutation in a difficult sequence context were investigated, through analysis of an insertion in a homopolymeric stretch (m.3571insC).  相似文献   

4.
Multiple mutations in several ion channel genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, and KCNJ2) have been shown to cause autosomal dominant long QT syndrome (LQTS), a familial cardiac disorder that causes syncope, seizures, and sudden death. Due to their multiple loci and considerable size, mutation detection in these genes represents a challenge that is only partially met by the conventional screening method of single-stranded conformational polymorphism (SSCP). The recently introduced denaturing high-performance liquid chromatography (dHPLC) offers a promising new method for a fast and sensitive analysis of PCR-amplified DNA fragments. To test the applicability of dHPLC in the molecular diagnosis of LQTS, we first assessed a cohort of 192 patients from our International LQTS Registry for 14 previously identified mutations (including 10 different missense mutations, 1-bp, 2-bp, 3-bp, and 9-bp deletion mutations), and 2 polymorphisms in the LQTS potassium and sodium channel genes. Applying empirically determined exon-specific melting profiles, all mutations (including four previously undetectable by SSCP) were readily identified by dHPLC. We conclude that the dHPLC technology is a highly sensitive and efficient method for the molecular analysis of LQTS, and the same PCR amplicons developed for SSCP testing can be directly used for dHPLC assay.  相似文献   

5.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

6.
Errors introduced during PCR amplification set a selectivity limit for microsatellite analysis and molecular mutation detection methods since polymerase misincorporations invariably get confused with genuine mutations. Here we present hairpin-PCR, a new form of PCR that completely separates genuine mutations from polymerase misincorporations. Hairpin-PCR operates by converting a DNA sequence to a hairpin following ligation of oligonucleotide caps to DNA ends. We developed conditions that allow a DNA hairpin to be efficiently PCR-amplified so that, during DNA synthesis, the polymerase copies both DNA strands in a single pass. Consequently, when a misincorporation occurs it forms a mismatch following DNA amplification, and is distinguished from genuine mutations that remain fully matched. Error-free DNA can subsequently be isolated using one of many approaches, such as dHPLC or enzymatic depletion. We present feasibility for the main technical steps involved in this new strategy, conversion of a sequence to a hairpin that can be PCR-amplified from human genomic DNA, exponential amplification from picogram amounts, conversion of misincorporations to mismatches and separation of homoduplex from heteroduplex hairpins using dHPLC. The present hairpin-PCR opens up the possibility for a radical elimination of PCR errors from amplified DNA and a major improvement in mutation detection.  相似文献   

7.
Mutations in mitochondrial DNA (mtDNA) may result in various pathological processes. Detection of mutant mtDNAs is a problem for diagnostic practice that is complicated by heteroplasmy – a phenomenon of the inferring presence of at least two allelic variants of the mitochondrial genome. Also, the level of heteroplasmy largely determines the profile and severity of clinical manifestations. Here we discuss detection of mutations in heteroplasmic mtDNA using up-todate methods that have not yet been introduced as routine clinical assays. These methods can be used for detecting mutations in mtDNA to verify diagnosis of “mitochondrial disease”, studying dynamics of mutant mtDNA in body tissues of patients, as well as investigating structural features of mtDNAs. Original data on allele-specific discrimination of m.11778G>A mutation by droplet digital PCR are presented, which demonstrate an opportunity for simultaneous detection and quantitative assessment of mutations in mtDNAs.  相似文献   

8.
Mitochondrial DNA (mtDNA) mutations are responsible for mitochondrial diseases in numerous patients. But, until now, no rapid method was available for the identification of unknown deleterious point mutations. Here, we describe a new strategy for the rapid identification of heteroplasmic mtDNA mutations using mismatch-specific Surveyor Nuclease. This protocol involves the following three steps: (i) PCR amplification of the entire human mitochondrial genome in 17 overlapping fragments; (ii) localization of mtDNA mismatch(es) after digestion of the 17 amplicons by Surveyor Nuclease; and (iii) identification of the mutation by sequencing the region containing the mismatch. This Surveyor Nuclease-based strategy allows a systematic screening of the entire mtDNA to identify a mutation within 2 days. It represents an important diagnostic approach for mitochondrial diseases that can be routinely used in molecular diagnostic laboratories.  相似文献   

9.
Ling F  Shibata T 《The EMBO journal》2002,21(17):4730-4740
Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.  相似文献   

10.
We have evaluated the usefulness of denaturing high performance liquid chromatography (dHPLC) for scanning the adenomatous polyposis coli (APC) gene for point mutations, small deletions, and insertions. Our assay consists of 28 sets of primers to amplify the 15 exons of the APC gene. All PCR reactions were amplified simultaneously using the same reaction conditions in a 96-well format and then analyzed by dHPLC, using empirically determined optimum temperatures for partial fragment denaturation. Previously studied DNA specimens from 47 familial adenomatous polyposis (FAP) patients were analyzed by dHPLC and all mutations were correctly identified and confirmed by sequence analysis. This approach identified a single-base substitution in exon 6 and a 2-bp insertion in exon 15 that initially had not been detected by single-strand conformational polymorphism (SSCP) analysis. A novel mutation in exon 15 of the APC gene, 2065delG (codon 689) that had previously been undetected by the protein truncation test (PTT) was also identified by dHPLC. We present our validation studies of dHPLC technology for APC gene analysis in terms of sensitivity and specificity and compare it to current standard scanning technologies including PTT, SSCP, and conformational sensitive gel electrophoresis (CSGE).  相似文献   

11.
Zhou HH  Dai XN  Lin B  Mi H  Liu XL  Zhao FX  Zhang JJ  Zhou XT  Sun YH  Wei QP  Qu J  Guan MX 《遗传》2012,34(8):1031-1042
文章收集了7例携带线粒体tRNAAl。C5601T突变的中国Leber遗传性视神经病变(Leber’s hereditary opticneuropathy,LHON)的家系,通过眼科检查和遗传学分析,发现7个家系的外显率很低,分别为9.5%、14.3%、4.5%、8.3%、10.0%、22.2%和25.0%。用24对有部分重叠的引物对7个先证者线粒体DNA(Mitochondrial DNA,mtDNA)全序列进行扩增,并进行相关的分子生物学分析,结果发现这些家系均未携带G11778A、G3460A和T14484C这3个常见的原发突变位点,而在tRNAAla上发现了C5601T同质性突变,多态性位点分析分别属于东亚线粒体单体型G2、G2a1、G2a1、G2、G2b、G2a1、G2。C5601T突变位于线粒体tRNAAla的高度保守区(通用位点为59位),可能引起tRNA空间结构和稳定性发生改变,继而影响tRNA的代谢,导致线粒体蛋白和ATP合成障碍,最终导致视力损害。因此,tRNAAlaC5601T突变可能是与LHON相关的线粒体突变位点。同时低外显率提示其他因素(包括核修饰基因、环境因素)可能影响这7个中国C5601T突变家系的表型表达。  相似文献   

12.
Evaluation of DHPLC in the analysis of hemophilia A   总被引:6,自引:0,他引:6  
The manifestation of hemophilia A, a common hereditary bleeding disorder in humans, is caused by abnormalities in the factor VIII (FVIII) gene. A wide range of different mutations has been identified and provides the genetic basis for the extensive variability observed in the clinical phenotype. The knowledge of a specific mutation is of great interest as this may facilitate genetic counseling and prediction of the risk of anti-FVIII antibody development, the most serious complication in hemophilia A treatment to date. Due to its considerable size (7.2 kb of the coding sequence, represented by 26 exons), mutation detection in this gene represents a challenge that is only partially met by conventional screening methods such as denaturing gradient gel electrophoresis (DGGE) or single stranded conformational polymorphism (SSCP). These techniques are time consuming, require specific expertise and are limited to detection rates of 70-85%. In contrast, the recently introduced denaturing high performance liquid chromatography (dHPLC) offers a promising new method for a fast and sensitive analysis of PCR-amplified DNA fragments. To test the applicability of dHPLC in the molecular diagnosis of hemophilia A, we first assessed a cohort of 156 patients with previously identified mutations in the FVIII gene. Applying empirically determined exon-specific melting profiles, a total of 150 mutations (96.2%) were readily detected. Five mutations (3.2%) could be identified after temperatures were optimized for the specific nucleotide change. One mutation (0.6%) failed to produce a detectable heteroduplex signal. In a second series, we analyzed 27 hemophiliacs in whom the mutation was not identified after extensive DGGE and chemical mismatch cleavage (CMC) analysis. In 19 of these patients (70.4%), dHPLC facilitated the detection of the disease-associated nucleotide alterations. From these findings we conclude that the dHPLC technology is a highly sensitive method well suited to the molecular analysis of hemophilia A.  相似文献   

13.
内脂素(Visfatin)是脂肪细胞因子家族的新成员,主要由内脏脂肪组织产生.研究表明内脂素具有类胰岛素样作用.在检测固始鸡-安卡鸡资源群体3代(亲本,F1,F2)964只鸡Visfatin基因9bp插入/缺失(9 bp 'TAACCTGTG' insertion-deletion)多态的过程中,发现其杂合子的变性和非变性聚丙烯酰胺胶上除2条同源双链DNA(282bp和273bp)外有2条未知条带(命名为A和B).A,B条带经回收、二次PCR、再次聚丙烯酰胺凝胶电泳及DNA测序表明:Visfatin基因第10内含子中9bp insertion-deletion突变杂合子的PCR产物中,本身包含2种同源双链DNA片段和2种异源双链DNA片段,不需要经过额外的变性、退火处理,其PCR产物可以直接进行突变检测,在229个杂合突变中异源双链DNA的检出率为100%.因此,通过异源双链DNA这一标示物作为基因分型时的依照或者参考,建立适当的异源双链DNA分析法可进行基因中几个核苷酸插入/缺失多态的检测.  相似文献   

14.
A denaturing gradient gel electrophoresis (DGGE) method is described that detects even single base pair changes in mitochondrial DNA (mtDNA). In this method, restriction fragments of mtDNA are electrophoresed in a urea/formamide gradient gel at 60 degrees C. Migration distance of each mtDNA fragment in the gel depends on melting behavior which reflects base composition. Fragments are located by Southern blotting with specific mtDNA probes. With just four carefully chosen restriction enzymes and as little as 50-100 ng of mtDNA, the method covers almost the entire human mitochondrial genome. To demonstrate the method, human mtDNA was analyzed. In six normal individuals, DGGE revealed melting behavior polymorphisms (MBPs) in mtDNA fragments that were not detected by restriction fragment length polymorphism (RFLP) analysis in agarose gels. Another individual, shown to have a melting behavior polymorphism in the cytochrome b coding region, was studied in detail. By mapping, the mutation was deduced to lie between nt 14905 and 15370. The affected fragment was amplified by PCR and sequenced. Specific base changes were identified in the region predicted by the gel result. This method will be especially useful as a diagnostic tool in mitochondrial disease for rapid localization of mtDNA mutations to specific regions of the genome, but DGGE also could complement RFLP analysis as a more sensitive method to follow maternal lineage in human and animal populations in a variety of research fields.  相似文献   

15.
Mutation detection using a novel plant endonuclease.   总被引:35,自引:5,他引:30       下载免费PDF全文
We have discovered a useful new reagent for mutation detection, a novel nuclease CEL I from celery. It is specific for DNA distortions and mismatches from pH 6 to 9. Incision is on the 3'-side of the mismatch site in one of the two DNA strands in a heteroduplex. CEL I-like nucleases are found in many plants. We report here that a simple method of enzyme mutation detection using CEL I can efficiently identify mutations and polymorphisms. To illustrate the efficacy of this approach, the exons of the BRCA1 gene were amplified by PCR using primers 5'-labeled with fluorescent dyes of two colors. The PCR products were annealed to form heteroduplexes and subjected to CEL I incision. In GeneScan analyses with a PE Applied Biosystems automated DNA sequencer, two independent incision events, one in each strand, produce truncated fragments of two colors that complement each other to confirm the position of the mismatch. CEL I can detect 100% of the sequence variants present, including deletions, insertions and missense alterations. Our results indicate that CEL I mutation detection is a highly sensitive method for detecting both polymorphisms and disease-causing mutations in DNA fragments as long as 1120 bp in length.  相似文献   

16.
The transition from A to G at nt 5656 (5656A-->G) in mitochondrial DNA has been suggested to be a pathogenic mutation and, furthermore, a heteroplasmic one. We found that the mutation was present in 14 out of 83 healthy controls from northern Finland and that 5656A-->G was exclusively associated with mtDNA haplogroup U. Interestingly, 5656A-->G appeared to be heteroplasmic in NheI digestion of PCR fragments that were amplified by using a mismatched oligonucleotide primer creating a digestion site in the presence of the mutant variant. However, we did not detect the wild type genome in clones from such a sample and subsequent experiments revealed that the apparent heteroplasmy was due to inhibition of NheI by NaCl. Our results suggest that 5656A-->G is a polymorphism and it may be highly characteristic for Finns. Furthermore, new heteroplasmic mutations identified by restriction fragment analysis should be adequately controlled for any false positive results that may be due to incomplete digestion.  相似文献   

17.
Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.  相似文献   

18.
A simple approach is described to synthesize and clone an inexhaustible supply of any homozygous and/or heterozygous controls diluted with yeast genomic DNA to mimic human genome equivalents for use throughout the entire multiplex mutation assay. As a proof of principle, the 25 cystic fibrosis mutation panel selected by the American College of Medical Genetics and four additional mutant sequences were prepared as a single control mixture. The 29 CFTR mutations were incorporated into 17 gene fragments by PCR amplification of targeted sequences using mutagenic primers on normal human genomic DNA template. Flanking primers selected to bind beyond all published PCR primer sites amplified controls for most assay platforms. The 17 synthesized 433-933-bp CFTR fragments each with one to four homozygous mutant sequences were cloned into nine plasmid vectors at the multiple cloning site and bidirectionally sequenced. Miniplasmid preps from these nine clones were mixed and diluted with genomic yeast DNA to mimic the final nucleotide molar ratio of two CFTR genes in 6 x 10(9) bp total human genomic DNA. This mixture was added to control PCR reactions prior to amplification as the only positive control sample. In this fashion >200 multiplex clinical PCR analyses of >4,000 clinical patient samples have been controlled simultaneously for PCR amplification and substrate specificity for 29 tested mutations without cross contamination. This clinically validated multiplex cystic fibrosis control can be modified readily for different test formats and provides a robust means to control for all mutations instead of rotating human genomic controls each with a fraction of the mutations. This approach allows scores of additional mutation controls from any gene loci to be added to the same mixture annually.  相似文献   

19.
In the present study, a comprehensive, rapid and sensitive method for screening sequence variation of the human mitochondrial tRNA genes has been developed. For this purpose, the denaturing gradient gel electrophoresis (DGGE) technique has been appropriately modified for simultaneous mutation analysis of a large number of samples and adapted so as to circumvent the problems caused by the anomalous electrophoretic behavior of DNA fragments encoding tRNA genes. Eighteen segments of mitochondrial DNA (mtDNA), each containing a single uniform melting domain, were selected to cover all tRNA-encoding regions using the computer program MELT94. All 18 segments were simultaneously analyzed by electrophoresis through a single broad range denaturing gradient gel under rigorously defined conditions, which prevent band broadening and other migration abnormalities from interfering with detection of sequence variants. All base substitutions tested, which include six natural mutations and 14 artificially introduced ones, have been detected successfully in the present study. Several types of evidence strongly suggest that the anomalous behavior in DGGE of tRNA gene-containing mtDNA fragments reflects their tendency to form temporary or stable alternative secondary structures under semi-denaturing conditions. The high sensitivity of the method, which can detect as low as 10% of mutant mtDNA visually, makes it valuable for the analysis of heteroplasmic mutations.  相似文献   

20.
Impairments of mitochondrial genome are associated with a wide spectrum of degenerative diseases, development of tumors, aging, and cell death. We studied the content of mitochondrial DNA (mtDNA) with mutations and the total content of mutations in the brain and the spleen of mice subjected to X-ray irradiation at a dose of 1–5 Gy at 8–28 days after treatment. In these mice, we studied the number of mutant copies of extracellular mtDNA (ec-mtDNA) and its total content in blood plasma. We estimated mutations in control and irradiated mice using cleavage of heteroduplexes prepared by hybridization of PCR amplicons of mtDNA (D-loop region) mediated by CEL-I endonuclease, an enzyme that specifically cleaves unpaired bases. Changes in the total number of mtDNA copies relative to nuclear DNA were assessed by real time PCR using the ND-4 and GAPDH genes, respectively. We found that the number of mutant mtDNA copies was significantly increased in the brain and the spleen of irradiated mice and reached the maximum level at the eighth day after treatment; it then decreased by the 28th day after treatment. In nuclear genes similar to mutagenesis, mutagenesis of mtDNA in the brain and spleen tissues linearly depended on irradiation dose. In contrast to mutant nuclear genes, most mutant mtDNA copies were eliminated in the brain and spleen tissues, whereas the total content of mtDNA did not change within 28 days after irradiation. Our data show that, during this period, a high level of ec-mtDNA with mutations was observed in DNA circulating in blood plasma with the maximum level found at the 14th day. We suppose that mutant mtDNA copies are eliminated from cells of animals subjected to irradiation during the posttreatment period. Higher content of ec-mtDNA in blood plasma can be considered as a potential marker of radiation damage to the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号