首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between active sodium transport and oxygen consumption was investigated in toad urinary bladder exposed to identical sodium-Ringer's solution at each surface, while controlling the transepithelial electrical potential difference delta phi. Rates of sodium transport and oxygen consumption were measured simultaneously, both in the short-circuited state (delta phi = 0) and when delta phi was varied. Under short-circuit conditions, when the rates of active sodium transport changed spontaneously or were depressed with amiloride, the ratio of active sodium transport to the estimated suprabasal oxygen consumption Na/O2 was constant for each tissue, but varied among different tissues. Only when delta phi was varied did the ratio Na+/O2 change with the rate of active sodium transport; under these circumstances dNa+/dO2 was constant but exceeded the ratio measured at short-circuit [(Na+/O2)delta phi = 0[. This suggests that coupling between transport and metabolism is incomplete. The results are analyzed according to the principles of nonequilibrium thermodynamics, and intepreted in terms of a simple model of the transepithelial sodium transport system.  相似文献   

2.
The relationship between active sodium transport and oxygen consumption was investigated in toad urinary bladder exposed to identical sodium-Ringer's solution at each surface, while controlling the transepithelial electrical potential difference Δψ. Rates of sodium transport and oxygen consumption were measured simultaneously, both in the short-circuited state (Δψ = 0) and when Δψ was varied. Under short-circuit conditions, when the rates of active sodium transport changed spontaneously or were depressed with amiloride, the ratio of active sodium transport to the estimated suprabasal oxygen consumption Na+/O2 was constant for each tissue, but varied among different tissues. Only when Δψ was varied did the ratio Na+/dO2 change with the rate of active sodium transport; under these circumstances dNa+/dO2 was constant but exceeded the ratio measured at short-circuit [(Na+/O2)Δψ=0]. This suggests that coupling between transport and metabolism is incomplete. The results are analyzed according to the principles of nonequilibrium thermodynamics, and interpreted in terms of a simple model of the transepithelial sodium transport system.  相似文献   

3.
The effect of 1-deamino-8-D-arginine-vasopressin, dDAVP, the synthetic analogue of vasopressin, upon the active sodium transport across the frog skin was studied using standard microelectrode technique and compared with the effect of synthetic arginine-vasopressin, AVP. dDAVP applied to the basolateral side of the epithelium stimulated the active sodium transport as reflected by the increase of short-circuit current, Isc, and transepithelial electrical potential difference, Voc. Potential difference across both the apical, Vo, and the basolateral, Vi, cell membranes decreased. The driving force of transepithelial sodium transport, ENa, did not change. The transepithelial electrical resistance, Rt, ohmic resistance of the active sodium transport, RNa, and apical cell membrane resistance, Ro, rapidly decreased, while the resistance of the basolateral cell membrane, Ri, and the resistance of the shunt pathway, Rs, remained unchanged. It is concluded that dDAVP primarily increases sodium permeability of the apical cell membrane which subsequently stimulates sodium pump activity. This action is similar to that of AVP.  相似文献   

4.
Sodium transport and oxygen consumption have been simultaneously studied in the short-circuited toad skin. A constant stoichiometric ratio was observed in each skin under control condition (NaCl-Ringer's solution bathing both sides of the skin) and after block of sodium transport by ouabain. During alterations of sodium transport by removal and addition of K to the internal solution the stoichiometric ratio is constant although having a value higher than that observed in other untreated skins. The coupling between active sodium transport and oxygen consumption was studied after a theoretical nonequilibrium thermodynamic model. Studies were made of the influence of Na chemical potential difference across the skin on the rates of Na transport and oxygen consumption. A linear relationship was observed between the rates of Na transport and oxygen consumption and the Na chemical potential difference. Assuming the Onsager relationship to be valid, the three phenomenological coefficients which describe the system were evaluated. Transient increases in the rate of sodium transport and oxygen consumption were observed after a transitory block of sodium transport by removal of Na from the external solution. Cyanide blocks completely the rate of oxygen consumption in less than 2 min and the short-circuit current measured after that time decays exponentially with time, suggesting a depletion of ATP from a single compartment.  相似文献   

5.
The metabolic cost (in terms of oxygen consumption) of transcellular sodium transport was assessed on ventral frog skin and its isolated epithelial layers, by measuring the decrease in oxygen consumption by the tissue upon transient withdrawal of sodium from the outside solution. The same number of sodium ions was transported per molecule oxygen consumed whole skin (17.4 +/- 2.3) and its isolated epithelium (17.3 +/- 2.4). The metabolic cost of sodium transport could not be estimated properly when this process was blocked by amiloride or ouabain, as these drugs were found to bring about an increase in oxygen consumpton by the tissue when no sodium was available for transport.  相似文献   

6.
Active sodium transport across epithelial membranes has been analyzed by means of linear nonequilibirium thermodynamics. In this formulation the rates of active sodium transport JNa and the associated metabolic reaction Jr are postulated to be linear functions of both the electrochemical potential difference of sodium--XNa and the affinity A (negative free energy) of the metabolic reaction of driving transport. Experimental studies in various epithelia demonstrate that both JNa and Jr (oxygen consumption) are indeed linear functions of XNa. Theoretical considerations and experimental studies in other systems suggest that likelihood of linearity in A as well. If so, A may be evaluated. Several observations indicate that the quantity A evaluated from the thermodynamic formalism does in fact reflect the substrate-product ratio of the metabolic reaction which supports transport. This is in contrast to measurements of mean cellular concentrations, which may not reflect conditions at the site of transport. Associated studies of isotope kinetics permit the distinction between effects on the permeability of the active and passive transport pathways. With these combined approaches, it may prove possible to characterize both the energetic and permeability factors which regulate transport. The formulation has been applied to an analysis of the mechanism of action of the hormone aldosterone.  相似文献   

7.
The metabolic cost of active sodium transport was determined in toad bladder at different gradients of transepithelial potential. Deltapsi, by continuous and simultaneous measurements of CO2 production and of transepithelial electric current. Amiloride was used to block active sodium transport in order to assess the nontransport-linked, basal, production of CO2 and the passive permeability of the tissue. From these determinations active sodium transport, Jna, and suprabasal CO2 production, Jsb CO2, were calculated. Since large transients in Jna and Jsb CO2 frequently accompanied any abrupt change in deltapsi, steady state conditions were carefully defined. Some 20 to 40 min were required after a change in deltapsi before steady state of transport activity and of CO2 production were achieved. The metabolic cost of sodium transport proved to be the same whether the bladder expended energy moving sodium against a transepithelial electrical potential grandient of +50 mV or whether sodium was being pulled through "the active transport pathway" by an electrical gradient of -50 mV. In both cases the value of the ratio Jna/Jsb CO2 averaged some 20 sodium ions transported per molecule of CO2 produced. When the Na pump was blocked by 10(-2) M ouabain, the perturbations of the transepithelial electrical potential did not elicit changes of Jna nor, consequently of Jsb CO2. The independence of the ratio Jna/Jsb CO2 from deltapsi over the range+/-50 mV indicates a high degree of coupling between active sodium transport and metabolism.  相似文献   

8.
Previous studies indicate that ATP formation by the electron transport chain is impaired in sepsis. However, it is not known whether sepsis affects the mitochondrial ATP transport system. We hypothesized that sepsis inactivates the mitochondrial creatine kinase (MtCK)-high energy phosphate transport system. To examine this issue, we assessed the effects of endotoxin administration on mitochondrial membrane-bound creatine kinase, an important trans-mitochondrial ATP transport system. Diaphragms and hearts were isolated from control (n = 12) and endotoxin-treated (8 mg.kg(-1).day(-1); n = 13) rats after pentobarbital anesthesia. We isolated mitochondria using techniques that allow evaluation of the functional coupling of mitochondrial creatine kinase MtCK activity to oxidative phosphorylation. MtCK functional activity was established by 1) determining ATP/creatine-stimulated oxygen consumption and 2) assessing total creatine kinase activity in mitochondria using an enzyme-linked assay. We examined MtCK protein content using Western blots. Endotoxin markedly reduced diaphragm and cardiac MtCK activity, as determined both by ATP/creatine-stimulated oxygen consumption and by the enzyme-linked assay (e.g., ATP/creatine-stimulated mitochondrial respiration was 173.8 +/- 7.3, 60.5 +/- 9.3, 210.7 +/- 18.9, was 67.9 +/- 7.3 natoms O.min(-1).mg(-1) in diaphragm control, diaphragm septic, cardiac control, and cardiac septic samples, respectively; P < 0.001 for each tissue comparison). Endotoxin also reduced diaphragm and cardiac MtCK protein levels (e.g., protein levels declined by 39.5% in diaphragm mitochondria and by 44.2% in cardiac mitochondria; P < 0.001 and P = 0.009, respectively, comparing sepsis to control conditions). Our data indicate that endotoxin markedly impairs the MtCK-ATP transporter system; this phenomenon may have significant effects on diaphragm and cardiac function.  相似文献   

9.
Prolactin (PRL) induced a transient increase in active Na transport measured as the short circuit current (SCC) of the tadpole skin. Increase in SCC by PRL accelerated as the stage advanced between stages XXII and XXV. Prolactin caused two types of effect on the electric parameters of the active Na transport. In type I, it increased both the electromotive force of the active Na current (ENa) and the resistance to the active Na current (RNa). In type II, it decreased both ENa and RNa. A second application of PRL had no effect on SCC; that is, desensitization to PRL was observed.  相似文献   

10.
The selectivity and kinetics of system A amino acid transport in the rat exocrine pancreatic epithelium were characterized using the specific analogue alpha-methylaminoisobutyric acid. Unidirectional influx of alpha-methylaminoisobutyric acid was measured in isolated perfused pancreata by rapid dual tracer dilution. In cross-inhibition experiments DL-methylalanine, L-serine, L-cysteine, glycine, L-phenylalanine and L-glutamine were effective inhibitors of influx, whereas L-glutamate and L-lysine were less effective. In the presence of sodium alpha-methylaminoisobutyric acid influx was saturable with an apparent Kt = 1.7 +/- 0.2 mM and Vmax = 0.49 +/- 0.03 mumol/min per g (mean +/- S.E., n = 6). Influx of alpha-methylaminoisobutyric acid at 50 microM and 100 microM concentrations was significantly inhibited as the perfusate sodium concentration was gradually decreased from 156 mM to 26 mM by isoosmolar choline replacement. Estimated Kt values for sodium at these two methylaminoisobutyric acid concentrations approximated 200 mM. System A activity in the basolateral membrane of the exocrine pancreatic epithelium exhibits a high transport affinity, a wide tolerance for different amino acids and a dependency upon the extracellular sodium concentration.  相似文献   

11.
In the study of active transport it is important to distinguish between oxygen consumption sustaining transepithelial transport and that responsible for other tissue functions (basal metabolism). Since amiloride blocks transepithelial active sodium transport and the associated oxygen consumption in the frog skin and toad bladder, we and others have employed this agent to evaluate the rate of basal metabolism. This technique has recently been criticized in a report that amiloride (and ouabain) increased oxygen consumption when no sodium was available for transport. We have been unable to corroborate these observations. With magnesium-Ringer as external bathing solutions, amiloride and ouabain failed to stimulate oxygen consumption. With sodium-Ringer as external bathing solution amiloride reduced oxygen consumption about 30%, to a level indistinguishable from that found on external substitution of magnesium-Ringer for sodium-Ringer. We conclude that the use of amiloride permits evaluation of the rate of basal metabolism with acceptable accuracy; a possible slight depressant effect of ouabain on basal metabolism remains to be investigated.  相似文献   

12.
In the study of active transport it is important to distinguish between oxygen consumption sustaining transepithelial transport and that responsible for other tissue functions (basal metabolism). Since amiloride blocks transepithelial active sodium transport and the associated oxygen consumption in the frog skin and toad bladder, we and others have employed this agent to evaluate the rate of basal metabolism. This technique has recently been criticized in a report that amiloride (and ouabain) increased oxygen consumption when no sodium was available for transport. We have been unable to corroborate these observations.With magnesium-Ringer as external bathing solutions, amiloride and ouabain failed to stimulate oxygen consumption. With sodium-Ringer as external bathing solution amiloride reduced oxygen consumption about 30%, to a level indistinguishable from that found on external substitution of magnesium-Ringer for sodium-Ringer. We conclude that the use of amiloride permits evaluation of the rate of basal metabolism with acceptable accuracy; a possible slight depressant effect of ouabain on basal metabolism remains to be investigated.  相似文献   

13.
It has been proposed that an increase in the affinity of hemoglobin for O2 may be beneficial in severe hypoxemia. To test this hypothesis, we compared the response to progressive hypoxemia in dogs with normal hemoglobin affinity (P50 = 32.4 +/- 0.7 Torr) to dogs with a left shift of the oxyhemoglobin dissociation curve (P50 = 21.9 +/- 0.5 Torr) induced by chronic oral administration of sodium cyanate. Animals were anesthetized, paralyzed, and mechanically ventilated. The inspired O2 fraction was progressively lowered by increasing the inspired fraction of N2. The lowest level of O2 transport required to maintain base-line O2 consumption (VO2) was 9.3 +/- 0.8 ml.min-1.kg-1 for control and 16.5 +/- 1.1 ml.min-1.kg-1 for the sodium cyanate-treated dogs (P less than 0.01). Other measured parameters at this level of O2 transport were, for experimental vs. control: arterial PO2 19.3 +/- 2.4 (SE) Torr vs. 21.8 +/- 1.6 Torr (NS); arterial O2 content 10.0 +/- 1.2 ml/dl vs. 4.9 +/- 0.4 ml/dl (P less than 0.01); mixed venous PO2 14.0 +/- 1.5 Torr vs. 13.8 +/- 1.0 Torr (NS); mixed venous O2 content 6.8 +/- 1.0 ml/dl vs. 2.3 +/- 0.2 ml/dl (P less than 0.01); and O2 extraction ratio 32.7 +/- 2.8% vs. 51.2 +/- 3.8% (P less than 0.01). We conclude that chronic administration of sodium cyanate appears to be detrimental to O2 transport, since the experimental dogs were unable to increase their O2 extraction ratios to the same level as control, thus requiring a higher level of O2 transport to maintain their base-line VO2 values.  相似文献   

14.
These studies were designed to determine if the atria contains natriuretic substances that act through a non-natriuretic peptide type A (NPRA) receptor mechanism. C57BL/6 mice, either wild-type NPRA++ (WT) or NPRA-- knockout (KO), were anesthetized with pentobarbital. Catheters were placed in the trachea, carotid artery, jugular vein, and bladder. Urine was collected for six 30-min periods. Both groups received an iv injection of 100 ng of rat atrial natriuretic peptide (rANP) in 200 microl of saline after the first period (30 mins) and 200 microl of rat atrial extract after the fourth period (120 mins). ANP injection increased urine flow (UF) to 2.7 +/- 0.5 microl/min in the WT versus 1.9 +/- 0.2 in KO. Extract increased UF to 7.9 +/- 1.5 microl/min in WT versus 2.7 +/- 0.4 in KO (P < 0.01). ANP increased sodium excretion (ENa) to 0.47 +/- 0.10 micromoles/min in WT versus 0.27 +/- 0.04 in KO (P < 0.05). Extract increased ENa to 1.44 +/- 0.47 micromoles/min in WT versus 0.26 +/- 0.06 in KO (P < 0.05). Extract decreased mean arterial pressure (MAP) to 62 +/- 3 mm Hg in the WT versus 81 +/- 5 in KO (P < 0.01). ENa and MAP responses to extract in KO were not different from responses to 200 microl of saline. A constant 150-min infusion of rat atrial extract increased urine flow by 3-fold and ENa by 5-fold (both P < 0.05) in the WT mice but had no significant effect in the KO mice. Thus, acute renal and MAP responses to atrial extracts require the NPRA receptor.  相似文献   

15.
The correlation between the oxidative processes in tert-butyl hydroperoxide (tBHP)-exposed red blood cells and the reactions of oxygen consumption and release were investigated. Red blood cell exposure to tBHP resulted in transient oxygen release followed by oxygen consumption. The oxygen release in red blood cells was associated with intracellular oxyhaemoglobin oxidation. The oxygen consumption proceeded in parallel with free radical generation, as registered by chemiluminescence, but not to membrane lipid peroxidation. The oxygen consumption was also observed in membrane-free haemolyzates. The order of the organic hydroperoxide-induced reaction of oxygen release with respect to the oxidant (tBHP) was estimated to be 0.9 +/- 0.1 and that of the oxygen consumption reaction was determined to be 2.4 +/- 0.2. The apparent activation energy values of the oxygen release and oxygen consumption were found to be 107.5 +/- 18.5 kJ/mol and 71.0 +/- 12.5 kJ/mol, respectively. The apparent pKa value for the functional group(s) regulating the cellular oxyHb interaction with the oxidant in tBHP-treated red blood cells was estimated to be 6.7 +/- 0.2 and corresponded to that of distal histidine protonation in haemoprotein. A strong dependence of tBHP-induced lipid peroxidation on the oxygen concentration in a red blood cell suspension was observed (P50 = 32 +/- 3 mmHg). This dependence correlated with the oxygen dissociation curve of cellular haemoglobin. The order of the membrane lipid peroxidation reaction with respect to oxygen was found to be 0.5 +/- 0.1. We can conclude that the intensity of the biochemical process of membrane lipid peroxidation in tBHP-exposed erythrocytes is controlled by small changes in such physiological parameters as the oxygen pressure and oxygen affinity of cellular haemoglobin. Neither GSH nor oxyhaemoglobin oxidation depended on oxygen pressure.  相似文献   

16.
Uncertainty persists as to whether the stimulation of active sodium transport by aldosterone is attributable to effects on permeability or energetic factors. This question has been examined with the aid of a thermodynamic formulation in which the rate of both active sodium transport JNa and O2 consumption Jr are assumed to be linear functions of the electrical potential difference Δψ and the affinity A (negative free energy) of metabolic reaction. Previous studies have indicated constancy of a characteristic affinity on perturbation of Δψ, suggesting the possibility of its evaluation. In studies of paired frog skins the admnistration of aldosterone led to a significant increase in the short-circuit current I0, a suggestive increase in the associated rate of O2 consumption Jro, and a significant increase in the ratio
. If linearity obtains this ratio is equal to A. Depression of active sodium transport and the associated metabolism with amiloride, which depresses permeability, also results in an increase in the apparent affinity
. The results indicate that aldosterone does not act simply by increasing the permeability or the number of transport units operating in parallel, but suggests that energetic factors are implicated as well.  相似文献   

17.
The effects of phenytoin on isolated Pleurodema thaul toad skin were investigated. Low (micromolar) concentrations of the antiepileptic agent applied to the outside surface of the toad epithelium increased the electrical parameters (short-circuit current and potential difference) by over 40%, reflecting stimulation of Na(+) transport, whereas higher (millimolar concentrations, outside and inside surface) decreased both electric parameters, the effect being greater at the inside surface (40% and 80% decrease, respectively). The amiloride test showed that the stimulatory effect was accompanied by an increase and the inhibitory effect by a decrease in the sodium electromotive force (ENa). It is concluded that the drug interaction with membrane lipid bilayers might result in a distortion of the lipid-protein interface contributing to disturbance of Na(+) epithelial channel activity. After applying the Na(+)-K(+)-ATPase blocker ouabain and replacing the Na(+) ions in the outer Ringer's solution by choline, it was concluded that both active and passive transport are involved in sodium absorption, although active transport predominates.  相似文献   

18.
The effects of cytochalasin B on electrophysiological properties and sodium transport in rat jejunum in vitro are described. Stripped paired rat jejunal segments were maintained in Ussing chambers with Leibovitz's (L-15) tissue culture medium bubbled with 100% oxygen. L-15 medium contains galactose as the only sugar, and an assortment of amino acids and cofactors to nourish the tissue. Electrophysiological parameters of short-circuit current (Isc) and transepithelial potential difference could be maintained for up to 4 h in control tissues. Upon application of cytochalasin B (20 micrograms/ml), on the mucosal side, Isc and potential difference fell within 1 h from 1.93 +/- 0.12 to 1.09 +/- 0.14 (mean +/- S.E.) muequiv./cm2 per h and from 5 to 2.5 mV. Tissue resistance remained unchanged at approx. 110 omega X cm2 for up to 4 h. 22Na net flux was 4.1 +/- 0.9 muequiv./cm2 per h during the last control period and fell to zero within 1 h after cytochalasin B treatment. Transmission electron micrographs revealed no gross morphological changes at this dose. Absorptive junctional morphology was apparently not altered by cytochalasin B treatment, a finding which was consistent with the stable transepithelial electrical resistance observed during exposure to this drug. Active sodium transport processes coupled to hexose, amino acid, and chloride movements are all possible in L-15 medium. However, following exposure to 20 micrograms/ml cytochalasin B, all net sodium transport is completely inhibited. The data are consistent with the hypothesis of a common regulator for active sodium transport processes which is modulated through structural changes in cytoskeletal organization.  相似文献   

19.
Summary The energetics of sodium transport were examined in toad (and occasionally frog) skin, with particular emphasis on the effect of aldosterone.Thermodynamic affinity was computed according to Essig and Caplan. Following treatment with antidiuretic hormone or drugs believed to affect only the apical membrane barrier, no change in thermodynamic affinity was observed either acutely (after one to two hours) or chronically (after 18-odd hours).By contrast, following treatment with aldosterone overnight, thermodynamic affinity was considerably increased, whether or not incubation was conducted in the presence of sodium in the outer solution; addition of glucose at the end of incubation, whereby sodium transport was stimulated further, failed to influence affinity as measured. The stoichiometry between sodium transport and oxygen consumption was, however, unchanged by aldosterone treatment in short-circuit conditions, neither was that fraction of aerobic metabolism unrelated to sodium transport influenced.It is concluded that the change observed with aldosterone can be directly ascribed to the hormone, as it is independent of glucose availability and of sodium transport. Aldosterone action, at least following prolonged incubation, therefore does not involve only an increase in apical conductance for sodium.  相似文献   

20.
Micron-sized sensors were used to monitor glucose and oxygen levels in the extracellular space of single islets of Langerhans in real-time. At 10 mM glucose, oscillations in intraislet glucose concentration were readily detected. Changes in glucose level correspond to changes in glucose consumption by glycolysis balanced by mass transport into the islet. Oscillations had a period of 3.1 +/- 0.2 min and amplitude of 0.8 +/- 0.1 mM glucose (n = 21). Superimposed on these oscillations were faster fluctuations in glucose level during the periods of low glucose consumption. Oxygen level oscillations that were out of phase with the glucose oscillations were also detected. Oscillations in both oxygen and glucose consumption were strongly dependent upon extracellular Ca(2+) and sensitive to nifedipine. Simultaneous measurements of glucose with intracellular Ca(2+) ([Ca(2+)](i)) revealed that decreases in [Ca(2+)](i) preceded increases in glucose consumption by 7.4 +/- 2.1 s during an oscillation (n = 9). Conversely, increases in [Ca(2+)](i) preceded increases in oxygen consumption by 1.5 +/- 0.2 s (n = 4). These results suggest that during oscillations, bursts of glycolysis begin after Ca(2+) has stopped entering the cell. Glycolysis stimulates further Ca(2+) entry, which in turn stimulates increases in respiration. The data during oscillation are in contrast to the time course of events during initial exposure to glucose. Under these conditions, a burst of oxygen consumption precedes the initial rise in [Ca(2+)](i). A model to explain these results is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号