首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli polymerase 1 (Pol 1) and Thermus aquaticus Taq polymerase are homologous Type I DNA polymerases, each comprised of a polymerase domain, a proofreading domain (inactive in Taq), and a 5' nuclease domain. "Klenow" and "Klentaq" are the large fragments of Pol 1 and Taq and are functional polymerases lacking the 5' nuclease domain. In the available crystal structures of full-length Taq, the 5' nuclease domain is positioned in two different orientations: in one structure, it is extended out into solution, whereas in the other, it is folded up against the polymerase domain in a more compact structure. Analytical ultracentrifugation experiments report s20,w values of 5.05 for Taq, 4.1 for Klentaq, 5.3 for E. coli Pol 1, and 4.6 for Klenow. Measured partial specific volumes are all quite similar, indicating no significant differences in packing density between the mesophilic and thermophilic proteins. Small angle x-ray scattering studies report radii of gyration of 38.3 A for Taq, 30.7 A for Klentaq, and 30.5 A for Klenow. The hydrodynamic and x-ray scattering properties of the polymerases were also calculated directly from the different crystal structures using the programs HYDROPRO (Garcia De La Torre, J., Huertas, M. L., and Carrasco, B. (2000) Biophys J. 78, 719-730) and CRYSOL (Svergun, D. I., Barberato, C., and Koch, M. H. J. (1995) J. Appl. Crystalogr. 28, 768-773), respectively. The combined experimental and computational characterizations indicate that the full-length polymerases in solution are in a conformation where the 5' nuclease domain is extended into solution. Further, the radius of gyration, and hence the global conformation of Taq polymerase, is not altered by the binding of either matched primer template DNA or ddATP.  相似文献   

2.
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.  相似文献   

3.
DNA and RNA frequently form various branched intermediates that are important for the transmission of genetic information. Helicases play pivotal roles in the processing of these transient intermediates during nucleic acid metabolism. The archaeal Hef helicase/ nuclease is a representative protein that processes flap- or fork-DNA structures, and, intriguingly, its C-terminal half belongs to the XPF/Mus81 nuclease family. Here, we report the crystal structure of the helicase domain of the Hef protein from Pyrococcus furiosus. The structure reveals a novel helical insertion between the two conserved helicase core domains. This positively charged extra region, structurally similar to the "thumb" domain of DNA polymerase, plays critical roles in fork recognition. The Hef helicase/nuclease exhibits sequence similarity to the Mph1 helicase from Saccharomyces cerevisiae; XPF/Rad1, involved in DNA repair; and a putative Hef homolog identified in mammals. Hence, our findings provide a structural basis for the functional mechanisms of this helicase/nuclease family.  相似文献   

4.
We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition.  相似文献   

5.
The Mus81‐Eme1 complex is a structure‐selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross‐links, replication fork collapse, or double‐strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81‐Eme1, we determined crystal structures of human Mus81‐Eme1 bound to various flap DNA substrates. Mus81‐Eme1 undergoes gross substrate‐induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre‐ and post‐nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post‐nick DNA. These features are crucial for comprehensive protein‐DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81‐Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81‐Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends.  相似文献   

6.
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria and essential for growth. Their distinctive substrate specificity and domain organization vis-a-vis human ATP-dependent ligases make them outstanding targets for anti-infective drug discovery. We report here the 2.3 A crystal structure of Escherichia coli LigA bound to an adenylylated nick, which captures LigA in a state poised for strand closure and reveals the basis for nick recognition. LigA envelopes the DNA within a protein clamp. Large protein domain movements and remodeling of the active site orchestrate progression through the three chemical steps of the ligation reaction. The structure inspires a strategy for inhibitor design.  相似文献   

7.
The polymerase and 5'-nuclease components of DNA polymerase I must collaborate in vivo so as to generate ligatable structures. Footprinting shows that the polymerase and 5'-nuclease cannot bind simultaneously to a DNA substrate and appear to compete with one another, suggesting that the two active sites are physically separate and operate independently. The desired biological end point, a ligatable nick, results from the substrate specificities of the polymerase and 5'-nuclease. The preferred substrate of the 5'-nuclease is a "double-flap" structure having a frayed base at the primer terminus overlapping the displaced strand that is to be cleaved by the 5'-nuclease. Cleavage of this structure occurs almost exclusively between the first two paired bases of the downstream strand, yielding a ligatable nick. In whole DNA polymerase I, the polymerase and 5'-nuclease activities are coupled such that the majority of molecules cleaved by the 5'-nuclease have also undergone polymerase-catalyzed addition to the primer terminus. This implies that the 5'-nuclease can capture a DNA molecule from the polymerase site more efficiently than from the bulk solution.  相似文献   

8.
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.  相似文献   

9.
Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase ot-primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase ca and recruits DNA polymerase S and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase 8, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase E normally replicates this strand,but under conditions of dysfunction, DNA polymerase 8 may substitute.  相似文献   

10.
Abstract

Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase α -primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase α and recruits DNA polymerase δ and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase δ, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase ε normally replicates this strand, but under conditions of dysfunction, DNA polymerase δ may substitute.  相似文献   

11.
12.
Taq DNA聚合酶功能区域的定位   总被引:4,自引:0,他引:4  
通过参U法定点突变产生了TaqDNA聚合酶N端分别缺失3个,235个,287个和443个氨基酸的4个缺失体,利用Bal-31连续缺失法产生了TaqDNA聚合酶的C端分别缺失了2个、16个、29个、32个、34个氨基酸的5个缺失体.经DNA聚合酶活性测定表明N端缺失3个,235个,287个氨基酸后活力和完整的Taq相近,而缺失443个氨基酸后则失去了DNA聚合酶活力;C端的5个缺失体都失去了DNA聚合酶活性.据此TaqDNA聚合酶的功能区域被定位在287~832氨基酸之间.  相似文献   

13.
DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N(6)-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.  相似文献   

14.
Duplex probes with five base single-stranded overhangs can capture dsDNA targets from type IIS restriction nuclease digests. Ligation generates a predesigned nick site, where DNA polymerase can generate sequencing ladders by strand displacement or nick translation in the presence of trace amounts of dideoxynucleotides. This allows dsDNA targets to be captured from mixtures and directly sequenced without subcloning, purification or denaturation.  相似文献   

15.
Synthesis of the leading DNA strand requires the coordinated activity of DNA polymerase and DNA helicase, whereas synthesis of the lagging strand involves interactions of these proteins with DNA primase. We present the first structural model of a bacteriophage T7 DNA helicase-DNA polymerase complex using a combination of small angle x-ray scattering, single-molecule, and biochemical methods. We propose that the protein-protein interface stabilizing the leading strand synthesis involves two distinct interactions: a stable binding of the helicase to the palm domain of the polymerase and an electrostatic binding of the carboxyl-terminal tail of the helicase to a basic patch on the polymerase. DNA primase facilitates binding of DNA helicase to ssDNA and contributes to formation of the DNA helicase-DNA polymerase complex by stabilizing DNA helicase.  相似文献   

16.
Pseudomonas aeruginosa DNA ligase D (PaeLigD) exemplifies a family of bacterial DNA end-joining proteins that consist of a ligase domain fused to a polymerase domain and a putative nuclease module. The LigD polymerase preferentially adds single ribonucleotides at blunt DNA ends and, as we show here, is also capable of adding up to 4 ribonucleotides to a DNA primer-template. We report that PaeLigD has an intrinsic ability to resect the short tract of 3'-ribonucleotides of a primer-template substrate to the point at which the primer strand has a single 3'-ribonucleotide remaining. The failure to digest beyond this point reflects a requirement for a 2'-OH group on the penultimate nucleoside of the primer strand. Replacing the 2'-OH by a 2'-F, 2'-NH2, 2'-OCH3, or 2'-H abolishes the resection reaction. The ribonucleotide resection activity resides within a 187-amino acid N-terminal nuclease domain and is the result of at least two component steps: (i) the 3'-terminal nucleoside is first removed to yield a primer strand with a ribonucleoside 3'-PO4 terminus, and (ii) the 3'-PO4 is hydrolyzed to a 3'-OH. The 3'-ribonuclease and 3'-phosphatase activities are both dependent on a divalent cation, specifically manganese. PaeLigD preferentially remodels the 3'-ends of a duplex primer-template substrate rather than a single strand of identical composition, and it prefers DNA primer strands containing a short 3'-ribonucleotide tract to an all-RNA primer. The nuclease domain of PaeLigD and its bacterial homologs has no apparent structural or mechanistic similarity to previously characterized nucleases. Thus, we surmise that it exemplifies a novel phosphoesterase family, defined in part by conserved residues Asp-50, Arg-52, and His-84, which are essential for the 3'-ribonuclease and 3'-phosphatase reactions.  相似文献   

17.
18.
A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.  相似文献   

19.
Leukocyte adhesion deficiency (LAD) is a heritable deficiency of the LFA-1, Mac-1, p150,95 family of leukocyte alpha beta heterodimers (the leukocyte integrins). We have studied the defect in patients who synthesize an aberrantly small form of the beta subunit common to all three proteins. S1 nuclease protection showed the presence of a 90-nucleotide mismatch in RNA from patients and relatives, correlating with inheritance of the disease. Use of the Taq polymerase chain reaction to amplify this region of RNA after first strand cDNA synthesis and sequencing showed an in-frame deletion of 90 nucleotides in the extracellular domain. Thus, this highly conserved region, 63% and 53% identical in amino acid sequence to two other beta subunits of the integrin family, is required for association of the beta subunit with alpha subunits. The 90-nucleotide region corresponds to a single exon present in both the normal and patient genome. The patient DNA has a single G to C substitution in the 5' splice site. This results in the direct joining of nonconsecutive exons in an unusual type of abnormal RNA splicing. A small amount of normally spliced message, detected by S1 nuclease protection and Taq polymerase chain reaction, encodes a normal sized beta subunit which is surface-expressed and accounts for the low levels of leukocyte integrin expression observed in these patients, and hence the moderate phenotype.  相似文献   

20.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号