首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R W Oberfelder  L L Lee  J C Lee 《Biochemistry》1984,23(17):3813-3821
The mechanism of allosteric regulation of rabbit muscle pyruvate kinase (PK) was examined in the presence of the allosteric inhibitor phenylalanine (Phe). Steady-state kinetic, equilibrium binding, and structural studies were conducted to provide a broad data base to establish a reasonable model for the interactions. Phe was shown to induce apparent cooperativity in the steady-state kinetic measurements at pH 7.5 and 23 degrees C. The apparent Km for phosphoenolpyruvate was shown to increase with increasing Phe concentrations. These results imply that Phe reduces the affinity of PK for phosphoenolpyruvate. This conclusion was substantiated by equilibrium binding studies which yielded association constants of phosphoenolpyruvate as a function of Phe concentration. The binding constant of Phe was also determined at pH 7.0 and 23 degrees C. The effect of ligands on the hydrodynamic properties of PK was monitored by difference sedimentation velocity, sedimentation velocity, and equilibrium experiments. The results showed that PK remains tetrameric both in the presence and in the absence of Phe. However, Phe induces a small decrease in the sedimentation coefficient of the enzyme; hence, it suggests a loosening of the protein structure. The accessibility of the sulfhydryl residues of the enzyme also increases in the presence of Phe. Furthermore, the Phe-induced conformational change was approximately 90% complete when only 25% of the binding sites were saturated. This result suggested that the regulatory behavior of PK might satisfactorily be described by the two-state model of Monod-Wyman-Changeux [Monod, J., Wyman, J., & Changeux, J.-P. (1965) J. Mol. Biol. 12, 88-118].  相似文献   

2.
Isothermal calorimetry has been used to examine the effect of thermodynamic non-ideality on the kinetics of catalysis by rabbit muscle pyruvate kinase as the result of molecular crowding by inert cosolutes. The investigation, designed to detect substrate-mediated isomerization of pyruvate kinase, has revealed a 15% enhancement of maximal velocity by supplementation of reaction mixtures with 0.1 M proline, glycine or sorbitol. This effect of thermodynamic non-ideality implicates the existence of a substrate-induced conformational change that is governed by a minor volume decrease and a very small isomerization constant; and hence, substantiates earlier inferences that the rate-determining step in pyruvate kinase kinetics is isomerization of the ternary enzyme product complex rather than the release of products.  相似文献   

3.
Moving boundary electrophoresis of creatine kinase in 0.1 I diethylbarbiturate buffer, pH 8.9, has yielded anomalous migration behavior that indicates intereonversion between two coexisting states of the enzyme at a rate comparable with the rate at which the two enzymic forms tend to separate by differential migration. Whereas a single, symmetrical boundary is observed in the ascending limb, distinct bimodality of the descending pattern is evident in electrophoresis of enzyme isolated from skeletal muscle of either rabbit or fish (Mugil cephalus): pronounced changes in the nature of this bimodality with time are observed in the case of fish muscle creatine kinase. The abnormal migration behavior is eliminated by inclusion of dithiothreitol in the electrophoresis medium or by covalent modification of the enzyme with 5,5′-dithiobis(2-nitrobenzoic acid). Velocity and equilibrium sedimentation studies have been used to identify the macromolecular event as an isomerization, and studies of sulfhydryl content to implicate either reversible sulfhydryl oxidation or thiol-disulfide interchange in the isomerization mechanism.  相似文献   

4.
Purification and properties of rat brain pyruvate kinase   总被引:1,自引:0,他引:1  
Rat brain pyruvate kinase was purified to near homogeneity by a three-step process involving ammonium sulfate precipitation and phosphocellulose and Blue-Sepharose CL-6B column chromatography. The enzyme migrated on polyacrylamide gel along with a commercial sample of rabbit muscle pyruvate kinase. The enzyme showed a hyperbolic relationship with phosphoenolpyruvate and ADP, with apparent Km's of 0.18 and 0.42 X 10(-3) M, respectively. The enzyme was inhibited by ATP, the effect being more pronounced at unsaturating concentrations of phosphoenolpyruvate. L-Phenylalanine was found to be a strong inhibitor of the enzyme, with the Ki for inhibitor being 0.11 mM. The inhibition by phenylalanine was more pronounced at pH 7.4 than at pH 7.0, and appeared to be competitive with phosphoenolpyruvate. L-Alanine and fructose 1,6-bisphosphate prevented the inhibition of the enzyme by phenylalanine. Ca2+ was found to be a strong inhibitor of the enzyme, and the inhibition was more marked at saturating phosphoenolpyruvate concentrations. The kinetic properties of the purified brain pyruvate kinase suggest that the enzyme may be distinct from the muscle or liver enzymes.  相似文献   

5.
The effects of a small inert solute, sucrose, on the kinetics of hydrolysis of N-acetyl-tryptophan ethyl ester by bovine alpha-chymotrypsin have been investigated. In studies at pH 7 and 20 degrees C the presence of 0.5 M sucrose in assay mixtures caused no discernible change in kinetic parameters, a result consistent with existence of the enzyme in a single conformational state under those conditions. However, at pH 3.5 and 50 degrees C, conditions under which the enzyme comprises an equilibrium mixture of compact and expanded isomeric states, inclusion of the inert solute led to a considerable decrease in Michaelis constant (0.84 to 0.61 mM) but no significant change in maximal velocity. These results were shown to be amenable to quantitative interpretation in terms of thermodynamic nonideality effects on catalysis by an enzyme undergoing reversible isomerization in the absence of substrate. For that analysis, which required experimental estimates of the equilibrium constant for preexisting isomerization of enzyme and the activity coefficient of substrate, the magnitude of the former (0.3) was obtained by difference spectroscopy: liquid-liquid partition studies with bromobenzene as organic phase were used to determine the effect of sucrose on the activity coefficient of N-acetyltryptophan ethyl ester. Such agreement between experimental kinetic findings and theoretical predictions based on considerations of excluded volume points to the possible use of the space-filling effects of small solutes for delineating the gross extent of conformational changes associated with reversible isomerization of proteins, and hence to the potential of thermodynamic nonideality as a probe for studying protein denaturation mechanisms as well as substrate-mediated changes associated with enzyme reaction mechanisms.  相似文献   

6.
Cold lability of pyruvate, orthophosphate dikinase in the maize leaf   总被引:10,自引:5,他引:5       下载免费PDF全文
Cold lability of pyruvate, orthophosphate dikinase was investigated using a homogeneous, purified enzyme preparation from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. Its stability was markedly reduced below about 10 C and the rate of cold inactivation followed first order kinetics at a concentration lower than about 0.1 milligram of enzyme per milliliter. Cold inactivation was little affected by pH in the range which gives good stability for the enzyme at warm temperatures and the enzyme activity was protected strongly by inclusion of substrates (pyruvate and phosphoenolpyruvate) and polyols such as sucrose, sorbitol, and glycerol. Loss of catalytic activity was accompanied by an apparent dissociation of a tetrameric form of the enzyme (9S form) into a new, more slowly sedimenting (5.1S) component. Inclusion of pyruvate at 4 mM in the cold-treated enzyme had no effect on the sedimentation value. A sharp change in activation energy of the dikinase-catalyzed reaction was observed near 12 C and its break point appears to be close to the generally accepted critical low temperature limit for the growth of maize plants.  相似文献   

7.
A kinetic study of rabbit muscle pyruvate kinase   总被引:8,自引:8,他引:0       下载免费PDF全文
The paper reports a study of the kinetics of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by rabbit muscle pyruvate kinase. The experimental results indicate that the reaction mechanism is equilibrium random-order in type, that the substrates and products are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP, and that dead-end complexes, between pyruvate, ADP and Mg(2+), form randomly and exist in equilibrium with themselves and other substrate complexes. Values were determined for the Michaelis, dissociation and inhibition constants of the reaction and are compared with values ascertained by previous workers.  相似文献   

8.
The M1 isozyme of pyruvate kinase has been purified from human psoas muscle in a seven-step procedure. Fractionation by ammonium sulfate precipitation, heat treatment, acetone precipitation, diethylaminoethyl cellulose batchwise treatment followed by chromatography on carboxymethyl cellulose and Sephadex G-200 gave a product with a specific activity of 383 U/mg representing a 294-fold purification with a yield of 11%. The product formed orthorhombic crystals and was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate, sedimentation velocity, sedimentation equilibrium, and immunodiffusion. The purified enzyme has a molecular weight of 240700 and has a sedimentation coefficient (S20,W) of 10.04S. It contains four subunits with identical molecular weights of 61000. No free N-terminal amino acids could be detected. Antibody prepared against the purified human M1 isozyme does not cross-react by immunodiffusion or enzyme inactivation with the human erythrocyte isozyme and in the reverse experiment antibody prepared against human erythrocyte pyruvate kinase does not cross-react with the purified M1 isozyme. The amino acid composition of the M1 isozyme is presented.  相似文献   

9.
1. The proton-transfer reactions of yeast pyruvate kinase (EC 2.7.1.40) were studied. Proton-transfer from C-3 of phosphoenolpyruvate to water occurs only in the presence of the phosphoryl-acceptor ADP. Proton transfer from C-3 of pyruvate to water occurs only in the presence of ATP. However, the proton transfer in the latter case occurs 10-100 times faster than phosphoryl transfer; this supports a mechanism in which proton transfer precedes phosphoryl transfer in the reverse reaction of pyruvate kinase. 2. The characteristics of proton-transfer reactions of yeast pyruvate kinase were compared with those previously reported for rabbit muscle pyruvate kinase (Robinson, JL. and Rose, I.A. (1972) J. Biol. Chem. 247, 1096-1105). The pH-profiles and the divalent cation dependencies were similar for Fru-1,6-P2-activated yeast pyruvate kinase and the muscle enzyme. Pyruvate enolization by yeast pyruvate kinase has an absolute requirement for ATP in contrast to enolization by the muscle enzyme which proceeds when ATP is replaced by Pi or other dianions. 3. Fructose-1,6-bisphosphate was shown to affect the catelytic steps of yeast pyruvate kinase in addition to the binding of substrates. Its role depends on the divalent cation used to activate the enzyme.  相似文献   

10.
1. An improved purification procedure for the brain-type creatine kinase from ox smooth muscle is described. 2. Michaelis constants show the characteristic dependence on the concentration of the second substrate: the derived constants are compared with those for the enzyme from ox brain. 3. Inhibition by iodoacetamide gives a biphasic curve and the total extent of the reaction depends on the enzyme concentration. The rate of inhibition at pH8.6 is not affected by creatine plus MgADP or by a range of simple anions. Addition of creatine plus MgADP plus either NO(3) (-) or Cl(-) ions affords 71.5 and 44% protection respectively. ADP could be replaced by 2-deoxy-ADP but not by alphabeta-methylene ADP, XDP, IDP, GDP or CDP. Nucleotides that did not protect would not act as substrates. 4. Difference-spectra measurements support the interpretation that addition of NO(3) (-) ions to the enzyme-creatine-MgADP complex causes further conformational changes in the enzyme accompanying the formation of a stable quaternary enzyme-creatine-NO(3) (-)-MgADP complex that simulates an intermediate stage in the transphosphorylation reaction. However, the enzyme structure is partially destabilized by quaternary-complex formation. IDP apparently fails to act as a substrate because it cannot induce the necessary conformational change. This behaviour is compared with that of rabbit skeletal muscle creatine kinase. 5. With pyruvate kinase from rabbit muscle, anions activate in the absence of an activating cation and either inhibit or have no effect in its presence. 6. Both activation and inhibition were competitive with respect to the substrate, phosphoenolpyruvate, and curved double-reciprocal plots were obtained. The results may be interpreted in terms of co-operatively induced conformational changes, and this is supported by difference-spectra measurements. However, the Hill coefficient of 1 was not significantly altered. 7. Inhibition by lactate plus pyruvate is less than additive, indicating that both bind to the same site on the enzyme, whereas that by lactate plus NO(3) (-) is additive, indicating binding at separate sites. It is inferred that a quaternary enzyme-pyruvate-NO(3) (-)-MgADP complex could form, but no evidence was obtained to suggest that it possessed special properties comparable with those found with creatine kinase. The implications of these findings for the unidirectional nature of the mechanism of pyruvate kinase is discussed. 8. Lactate or alpha-hydroxybutyrate could not act instead of pyruvate to form a stable quaternary complex, although both activate the K(+)-free enzyme. Only the former inhibits the K(+)-activated enzyme. The activating cation both lowers the Michaelis constant for phosphoenolpyruvate and tightens up the specificity of its binding site.  相似文献   

11.
The bifunctional reagent 1,4-dibromobutanedione (DBBD) reacts covalently with pyruvate kinase from rabbit muscle to cause inactivation of the enzyme at a rate that is linearly dependent on the reagent concentration, giving a second order rate constant of 444 min-1 M-1. The individual substrates phosphoenolpyruvate (with KCl), ADP, or ATP in the presence of divalent metal cation provide marked protection against inactivation suggesting that reaction occurs in the region of the active site. The limited incorporation of DBBD into pyruvate kinase was measured by reduction of the carbonyl groups of the enzyme-bound reagent using [3H]NaBH4. When pyruvate kinase was reacted with 120 microM DBBD at pH 7.0 for 50 min in the absence of protectants, 1.8 mol of tritium/mol of subunit was incorporated, whereas in the presence of phosphoenolpyruvate with KCl, only 1.0 mol of tritium was incorporated per mole of subunit. Modified peptides were isolated from tryptic digests of pyruvate kinase. Reaction of enzyme in the presence of substrate (showing no activity loss) yielded a single peptide, Asn-Ile-X1-Lys, where X1 corresponds to Cys164 of the known amino acid sequence of muscle pyruvate kinase. In the absence of protectants, reaction for 10 min (when the enzyme retained substantial activity) yielded Asn-Ile-X1-Lys as the major labeled peptide, whereas reaction for 50 min (when the enzyme was 88% inactivated) yielded predominantly Asn-Ile-X1-Lys cross-linked to X2-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys, where X2 corresponds to Cys151. Because activity loss correlates with the appearance of the cross-linked peptides but not with formation of Asn-Ile-X1-Lys, inactivation is likely caused by the reaction leading to the cross-link between Cys151 and Cys164. The distance between the alpha-carbons of these residues in the crystal structure is 15.5 A, whereas only 12.0 A can be spanned by the two side chains linked by a dioxobutyl group, suggesting either that pyruvate kinase undergoes a conformational change in forming the cross-link or that local rapid fluctuations in structure occur in solution to the extent of 3.5 A in this region of pyruvate kinase.  相似文献   

12.
The structural stability of rabbit muscle pyruvate kinase was examined. The unfolding of pyruvate kinase was induced by guanidine hydrochloride, and the process was monitored by spectroscopic techniques (fluorescence and UV absorption) and hydrodynamic measurements (sedimentation velocity, sedimentation equilibrium, densimetry, and viscometry). The spectroscopic techniques revealed that the unfolding of pyruvate kinase induced by guanidine hydrochloride is not a simple cooperative process. This suggests that different regions of pyruvate kinase are unfolding with different efficiencies in response to the denaturant. These regions are most likely related to the domain structures observed by x-ray crystallography. In the presence of L-phenylalanine, the allosteric inhibitor, the denaturation process became more cooperative, and the enzyme dissociated and unfolded at a higher denaturant concentration. The binding of phenylalanine also induced a structural change in the enzyme, rendering it more susceptible to tryptic digestion. One of the peptides, the production rate of which was increased, was isolated and sequenced. Its N terminus is located at the interface between two domains, one of which contains the active site. This evidence indicates structural changes, probably involving domain-domain interaction, for pyruvate kinase in response to phenylalanine binding.  相似文献   

13.
The regulatory mechanism of rabbit muscle pyruvate kinase has been studied as a function of temperature in conjunction with phenylalanine, the allosteric inhibitor. The inhibitory effect of phenylalanine is modulated by temperature. At low temperatures, the presence of phenylalanine is almost inconsequential, but as the temperature increases so does the phenylalanine-dependent inhibition of the kinetic activity. In addition, the presence of phenylalanine induces cooperativity in the relation between velocity and substrate concentration. This effect is especially pronounced at elevated temperature. The kinetic data were analyzed using an equation that describes the steady-state kinetic velocity data as a function of five equilibrium constants and two rate constants. Van't Hoff analysis of the temperature dependence of the equilibrium constants determined by nonlinear curve fitting revealed that the interaction of pyruvate kinase with its substrate, phosphoenolpyruvate, is an enthalpy-driven process. This is consistent with an interaction that involves electrostatic forces, and indeed, phosphoenolpyruvate is a negatively charged substrate. In contrast, the interaction of pyruvate kinase with phenylalanine is strongly entropy driven. These results imply that the binding of phenylalanine involves hydrophobic interaction and are consistent with the basic concepts of strengthening of the hydrophobic effect with an increase in temperature. The effect of phenylalanine at high temperatures is the net consequence of weakening of substrate-enzyme interaction and significant strengthening of inhibitor binding to the inactive state of pyruvate kinase. The effects of salts were also studies. The results show that salts also exert a differential effect on the binding of substrate and inhibitor to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
When cod fish muscle oxalacetate decarboxylase catalyzes the decarboxylation of oxalacetate in the presence of NaBH4, L-lactate results from the reduction of enzyme-bound pyruvate. However, D-lactate results when borohydride reduces the binary enzyme-pyruvate complex formed by adding pyruvate from solution, as reported by others. This observation suggests that there are alternate mechanisms for reduction that are either kinetically or sterically determined for the E-pyruvate forms produced in the two directions. In the process of investigating the mechanism of reduction, the cod fish muscle decarboxylase was discovered to be identical with pyruvate kinase. Decarboxylase activity appears to take place at a site which overlaps the phosphoenolpyruvate binding site on this enzyme, as discussed in the following paper. Crystalline rabbit muscle pyruvate kinase also contains significant decarboxylase activity indicating that the two reactions may be structurally related functions. In the presence of K+, orthophosphate, or ATP the rabbit muscle enzyme catalyzes the detritiation of enzyme-bound pyruvate formed during decarboxylation before release of pyruvate from the enzyme, in analogy with the detritiation of pyruvate formed from P-[3-3/]enolpyruvate in the kinase reaction. This observation is consistent with the formation of an enolpyruvate intermediate common to the kinetic pathways of both reactions. Since the decarboxylase reac.tion is completely stereospecific, within the limits of detection, going with retention of configuration, the protonation of the enolpyruvate intermediate is completely determined by the enzyme as is the case with the enolpyruvate intermediate generated from P-enolpyruvate in the kinase reaction.  相似文献   

15.
The kinetics of rat liver L-type pyruvate kinase (EC 2.7.1.40), phosphorylated with cyclic AMP-stimulated protein kinase from the same source, and the unphosphorylated enzyme have been compared. The effects of pH and various concentrations of substrates, Mg2+, K+ and modifiers were studied. In the absence of fructose 1, 6-diphosphate at pH 7.3, the phosphorylated pyruvate kinase appeared to have a lower affinity for phosphoenolpyruvate (K0.5=0.8 mM) than the unphosphorylated enzyme (K0.5=0.3 mM). The enzyme activity vs. phosphoenolpyruvate concentration curve was more sigmoidal for the phosphorylated enzyme with a Hill coefficient of 2.6 compared to 1.6 for the unphosphorylated enzyme. Fructose 1, 6-diphosphate increased the apparent affinity of both enzyme forms for phosphoenolpyruvate. At saturating concentrations of this activator, the kinetics of both enzyme forms were transformed to approximately the same hyperbolic curve, with a Hill coefficient of 1.0 and K0.5 of about 0.04 mM for phosphoenolpyruvate. The apparent affinity of the enzyme for fructose 1, 6-diphosphate was high at 0.2 mM phosphoenolpyruvate with a K0.5=0.06 muM for the unphosphorylated pyruvate kinase and 0.13 muM for the phosphorylated enzyme. However, in the presence of 0.5 mM alanine plus 1.5 mM ATP, a higher fructose 1, 6-diphosphate concentration was needed for activation, with K0.5 of 0.4 muM for the unphosphorylated enzyme and of 1.4 muM for the phosphorylated enzyme. The results obtained strongly indicate that phosphorylation of pyruvate kinase may also inhibit the enzyme in vivo. Such an inhibition should be important during gluconeogenesis.  相似文献   

16.
The mRNA coding for the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) was partially purified from the liver of cyclic-AMP-treated rats by a procedure involving multiple oligo(dT)-cellulose chromatographies and sucrose gradient fractionations. The purification was monitored by translational assay using a wheat germ extract. Relative to RNA bound once to oligo(dT)-cellulose, the final material was enriched 20-fold in template activity for phosphoenolpyruvate carboxykinase synthesis. With this RNA preparation, cell-free enzyme synthesis amounted to 5% of total mRNA-directed protein synthesis. The apparent sedimentation coefficient of phosphoenolpyruvate carboxykinase mRNA in sucrose gradients was between 20 and 22 S, corresponding to an average molecular weight of 0.93 X 10(6). By formamide/polyacrylamide gel electrophoresis the molecular weight of the enzyme mRNA was estimated at between 0.91 X 10(6) and 1.12 X 10(6). From these estimates, it was concluded that considerable non-coding sequence(s) are present in the mRNA. Approximately 20% of the enzyme mRNA in rat liver failed to bind to oligo(dT)-cellulose, presumably because of the absence of a poly(A) segment. The translation of phosphoenolpyruvate carboxykinase mRNA by the wheat germ extract was inhibited in the presence of 7-methylguanosine 5'-phosphate. The enzyme mRNA appears therefore to have a 'cap' at the 5' end.  相似文献   

17.
1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.  相似文献   

18.
The interaction of fructose 1,6-bisphosphate, phosphoenolpyruvate and ADP with pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from yeast and rabbit muscle has been studied as a function of pH utilizing the quenching of protein fluorescence at 330 nm by these ligands. Both the muscle and the yeast pyruvate kinase interact with either ADP or phosphoenolpyruvate with similar affinity, indicating that the substrate-binding sites for these two isozymes are similar. The major difference between the yeast and muscle isozymes is their affinity with fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate interacts with the yeast isozyme in orders of magnitude more strongly than with the muscle isozyme. Moreover, the affinity of fructose 1,6-bisphosphate to the yeast isozyme is strongly pH-dependent, while the interaction of fructose 1,6-bisphosphate with the muscle isozyme is independent of pH. The data indicate that yeast pyruvate kinase undergoes a conformational change as the pH is increased from 6.0 to 8.5.  相似文献   

19.
The kinetics of pyruvate phosphorylation by rabbit skeletal muscle pyruvate kinase (EC 2.7.1.40) has been studied with a coupled assay using P-enolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (EC 1.1.1.37). The reaction sequence is (See journal for formula). Although the equilibrium of the pyruvate kinase reaction by itself strongly favors pyruvate production, the over-all equilibrium of this coupled system favors the depletion of pyruvate, thus greatly reducing the problem of back reaction during the assay. In addition, the oxidation of NADH by malate dehydrogenase makes it possible to monitor the system with a spectrophotometer. The Michaelis constant of pyruvate kinase was found to be 0.9 mM for ATP and 7 mM for pyruvate, values that agree reasonably well with earlier studies using direct assays. However, the maximum velocity is about 6 mumol of pyruvate phosphorylated/min/mg of enzyme, which is very much faster than that indicated by earlier studies. These results suggest that the metabolic significance of the reverse reaction of muscle pyruvate kinase may have been underestimated. In particular, the data given here suggest that its rate in vivo is probably comparable to the observed rate of glycogen synthesis from lactate, making possible glyconeogenesis in muscle by pyruvate kinase reversal without the need for an enzymatic bypass of the kind employed by liver and kidney.  相似文献   

20.
Pyruvate kinase was extracted from Me2CO-dried tissue of various parts of tomato plants. Recovery of the enzyme was improved by the inclusion of thiols in the extraction medium, and its stability was increased considerably in the presence of glycerol and to a lesser extent tetramethylammonium chloride. A phosphatase was present in the tissue extracts which hydrolyses phosphoenolpyruvate in the absence of added ADP. ATP inhibited pyruvate kinase but stimulated the phosphatase, while Mg2+ stimulated both enzymes. Data obtained suggest that tomato leaf pyruvate kinase has an absolute dependence on monovalent cations for activity, K+ being the principal activator. The phosphatase was inhibited non-selectively by monovalent cations. The total activity of pyruvate kinase and its concentration on a tissue fresh weight basis was greatest in the leaves, activity increasing with the maturity of the tissue. Less enzyme was present in roots, and least in the fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号