首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of their diversity and abundance in a wide range of environments, particularly in cold regions, cold-adaptive archaea are expected to play a pivotal role in material recycling in cold environments. Methanogenic archaea are ubiquitous on earth and produce a large amount of methane (CH4) as their main carbon metabolite. Methanogens are the most laboratory amendable archaea. The few psychrophilic archaea that have been cultured to date are mainly affiliated with methanogens, thus make them a good model for investigating mechanisms of archaeal cold adaptation. Studies of psychrotolerant methanogens have been ongoing since the 1990s. Using Methanococcoides burtonii, a methanogen isolated from Ace Lake in Antarctica, extensive studies on the genomic characteristics associated with cold adaptation have been carried out by the Cavicchioli laboratory. We recently analyzed the genome of another psychrophilic methanogen and identified the gene repertoire associated with cold adaptation. This review summarizes recent studies of psychroactive methanogens, particularly their diversity, the genomics and proteomics associated with their cold adaptation, and the cellular components and proteins likely involved in their cold protection.  相似文献   

2.
高温会加快碱基脱氨基反应形成损伤碱基的速率,进一步对脱氨基的碱基进行复制会导致突变。因此,极端嗜热古菌基因组的稳定性面临着其生存高温环境的挑战。胞嘧啶脱氨基形成尿嘧啶,是常见的脱碱基类型,复制DNA中尿嘧啶会造成GC→AT的突变。尿嘧啶DNA糖苷酶(Uracil DNA glycosylase,UDG)是修复DNA中尿嘧啶的关键酶。基于识别底物的特异性,UDG分为6个家族,广泛分布在细菌、古菌、真核生物以及一些病毒中。基因组序列显示,极端嗜热古菌至少编码一种UDG。目前,对于细菌和真核生物的UDG已进行了大量的研究,但是关于极端嗜热古菌UDG的研究相对较少,尚处于初期阶段。本文综述了极端嗜热古菌UDG的研究进展,并对今后的研究提出了展望。  相似文献   

3.
Antarctica is an extreme continent composed of cold environments but also of several geothermal sites, among them is Deception Island, an active stratovolcano located in the South Shetland archipelago. From this island, few microbiological studies have been performed, and the presence of archaea has not been reported. In order to investigate the archaeal diversity in hydrothermalism from Deception Island, different submarine samples were taken from the flooded caldera. Samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene in conjunction with culture-dependent methods at hyperthermophilic temperatures. Analysis from DGGE band sequencing showed the presence of archaea belonging to the hyperthermophilic genus Thermococcus and different uncultured archaea closely related to environmental clones from hydrothermal vents. Archaea from the psychrotolerant genus Methanococcoides were also detected. Additionally, we have successfully isolated an anaerobic hyperthermophilic archaeon closely related to Thermococcus celericrescens. Cells were irregular cocci with a diameter between 0.6 and 2 μm and grew at 50–90 °C and at a NaCl concentration of 1–5 %. Here, we present, based on culture-dependent and culture-independent approaches, the first report on archaea from marine hydrothermal sites of Antarctica.  相似文献   

4.
Ether Lipids of Planktonic Archaea in the Marine Water Column   总被引:5,自引:3,他引:2       下载免费PDF全文
Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize an isotopically heavy carbon source such as algal carbohydrates and proteins or dissolved bicarbonate. Due to their high preservation potential, these lipids provide a fossil record of planktonic archaea and suggest that they have thrived in marine environments for more than 50 million years.  相似文献   

5.
Aims: The aim of the study was to investigate the feasibility of a continuous reactor for psychrophilic anaerobic wastewater treatment by using the sludge from cold natural environment. Methods and Results: Six sludge samples (S1–S6) were collected from different cold natural locations to select sludge with high anaerobic microbial activity under low temperatures. After a 225‐day incubation, the maximum specific methane production rate of a waterfowl lake sediment (S1) at 15°C (70·5 mLCH4 gVSS?1 day?1) was much higher than all other samples. S1 was thus chosen as the seed sludge for the reactor treating synthetic brewery wastewater at 15°C, by immobilizing the micro‐organisms on polyurethane foam carriers. The chemical oxygen demand (COD) removal efficiency reached over 80% after 240‐day operation at an organic loading rate of 5·3 kg m?3 day?1, and significant enrichment of biomass was observed. Clone libraries of the microbial communities in the inoculum had high diversities for both archaea and bacteria. Along with a decrease in microbial community diversities, the dominant bacteria (79·5%) at the end of the operation represented the phylum Firmicutes, while the dominant archaeon (41·5%) showed a similarity of 98% with the psychrotolerant methanogen Methanosarcina lacustris. Conclusions: The possibility of using anaerobic micro‐organisms from cold environments in anaerobic wastewater treatment under psychrophilic conditions is supported by these findings. Significance and Impact of the Study: This study enriches the theory on microbial community and the application on anaerobic treatment of sludge from cold natural environments.  相似文献   

6.
低温湿地甲烷古菌及其介导的甲烷产生途径   总被引:3,自引:0,他引:3  
甲烷是重要的温室气体,低温湿地是大气甲烷的重要来源,因为湿地土壤中生活着大量的微生物包括甲烷古菌,它们将有机物降解转化为甲烷.本文总结了近年来低温湿地甲烷古菌群落组成、甲烷产生途径及其与环境的关系.研究显示,乙酸是低温湿地中主要的产甲烷物质,氢产甲烷过程主要发生在中温地区或酸性泥炭土中,而在盐碱水域中甲醇、甲胺是甲烷的重要底物.位于我国青藏高原的若尔盖湿地具有高海拔但低纬度的地理特征,我们的前期研究却显示甲醇在该湿地的甲烷排放中具有重要贡献.相应地,低温湿地中的甲烷古菌主要是利用甲基类化合物/乙酸的甲烷八叠球菌目和氢营养型的甲烷微球菌目.然而不同类型湿地甲烷排放途径及甲烷古菌的差异主要与环境的土壤类型、pH及植被类型相关,如刚毛荸荠生长的若尔盖湿地土壤中来源于甲醇的甲烷占全部甲烷的l7%;而木里苔草土壤中乙酸是产甲烷的主要前体物质.尽管已知冷适应的甲烷古菌在低温湿地的甲烷排放中发挥重要作用,但目前获得培养的嗜冷甲烷古菌却很少.冷响应的组学研究显示甲烷古菌的冷适应涉及到全局性生物学过程.  相似文献   

7.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that simulates the majority of in situ conditions and supports the metabolism and growth of anaerobic methanotrophic archaea. We incubated sediments collected from within and outside a methane cold seep in Monterey Canyon, Calif., for 24 weeks on the AMIS system. Anaerobic methane oxidation was measured in all sediments after incubation on AMIS, and quantitative molecular techniques verified the increases in methane-oxidizing archaeal populations in both seep and nonseep sediments. Our results demonstrate that the AMIS system stimulated the maintenance and growth of anaerobic methanotrophic archaea, and possibly their syntrophic, sulfate-reducing partners. Our data demonstrate the utility of combining physiological and molecular techniques to quantify the growth and metabolic activity of anaerobic microbial consortia. Further experiments with the AMIS system should provide a better understanding of the biological mechanisms of methane oxidation in anoxic marine environments. The AMIS may also enable the enrichment, purification, and isolation of methanotrophic archaea as pure cultures or defined syntrophic consortia.  相似文献   

8.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that simulates the majority of in situ conditions and supports the metabolism and growth of anaerobic methanotrophic archaea. We incubated sediments collected from within and outside a methane cold seep in Monterey Canyon, Calif., for 24 weeks on the AMIS system. Anaerobic methane oxidation was measured in all sediments after incubation on AMIS, and quantitative molecular techniques verified the increases in methane-oxidizing archaeal populations in both seep and nonseep sediments. Our results demonstrate that the AMIS system stimulated the maintenance and growth of anaerobic methanotrophic archaea, and possibly their syntrophic, sulfate-reducing partners. Our data demonstrate the utility of combining physiological and molecular techniques to quantify the growth and metabolic activity of anaerobic microbial consortia. Further experiments with the AMIS system should provide a better understanding of the biological mechanisms of methane oxidation in anoxic marine environments. The AMIS may also enable the enrichment, purification, and isolation of methanotrophic archaea as pure cultures or defined syntrophic consortia.  相似文献   

9.
10.
We report several novel environmental sequences of archaea from the kingdom Crenarchaeota, recovered from anaerobic freshwater-lake sediments in Michigan. A nested PCR approach with Archaea- and Crenar-chaeota-specific primers was used to amplify partial Small-subunit ribosomal DNAs. Phylogenetic analysis of seven sequences shows that these DNAs represent a monophyletic lineage diverging prior to all recently identified crenarchaeotal phylotypes isolated from temperate environments. Including our lineage, all uncultured crenarchaeotal sequences recovered from moderate or cold environments form a distinct, monophyletic group separate from the "genuine" thermophilic crenarchaeota. Our finding extends the emerging picture that crenarchaeota, thought until recently to be solely extreme thermophiles, have radiated into an unexpectedly large variety of ecologically important, temperate environments.  相似文献   

11.
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.  相似文献   

12.
Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly (13)C-depleted lipids at greater depths in the sediments suggests that microbes involved in anaerobic oxidation of methane are present and presumably active at environmental temperatures of >30 degrees C, indicating that this process can occur not only at cold seeps but also at hydrothermal sites. The distribution of the membrane tetraether lipids of the methanotrophic archaea shows that these organisms have adapted their membrane composition to these high environmental temperatures.  相似文献   

13.
14.
Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species likely plays a role in repair of DNA via homologous recombination, a process that is crucial under DNA damaging conditions such as high temperatures. Several mechanisms for the transfer of DNA have been described in prokaryotes, emphasizing its general importance. However, until recently, not much was known about this process in prokaryotes growing in highly thermophilic environments. This review describes the different mechanisms of DNA transfer in hyperthermophiles, and how this may contribute to the survival and adaptation of hyperthermophilic archaea and bacteria to extreme environments.  相似文献   

15.
Archaeal habitats--from the extreme to the ordinary   总被引:2,自引:0,他引:2  
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.  相似文献   

16.
Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly 13C-depleted lipids at greater depths in the sediments suggests that microbes involved in anaerobic oxidation of methane are present and presumably active at environmental temperatures of >30°C, indicating that this process can occur not only at cold seeps but also at hydrothermal sites. The distribution of the membrane tetraether lipids of the methanotrophic archaea shows that these organisms have adapted their membrane composition to these high environmental temperatures.  相似文献   

17.
几种农田土壤中古菌、泉古菌和细菌的数量分布特征   总被引:5,自引:1,他引:4  
Shen JP  Zhang LM  He JP 《应用生态学报》2011,22(11):2996-3002
真核生物、细菌和古菌三者共同构成了生命的三域系统.古菌作为第3种生命形式,不仅能在高温、强酸和高盐等极端环境下生存,而且在海洋、湖泊和土壤等生境中也广泛分布,预示其在整个生态系统中有着不可估量的作用.本文以2个农田剖面土壤和2个长期施肥试验站祁阳(QY)和封丘(FQ)的土壤为对象,以实时定量PCR方法为主要研究手段,对土壤中古菌(包括泉古菌)和细菌的16S rRNA基因拷贝数丰度变化进行了研究.结果表明:土壤泉古菌16S rRNA基因拷贝数要低于古菌l~2个数量级,两者与细菌相比,16S rRNA基因拷贝数大小顺序为土壤泉古菌<古茵<细菌,而古菌和泉古菌16S rRNA基因拷贝数与细菌的比值均随土壤深度加深而增大.不同施肥处理对土壤古菌和泉古茵的数量有显著影响.QY试验站土壤古菌和细菌的数量与土壤pH值显著相关(分别为r=0.850,P<0.01和r=0.676,P<0.05).FQ古菌、泉古菌和细菌与土壤pH值相关性不显著,与土壤有机质含量相关性均达显著水平(分别为r=0.783,P<0.05;r=0.827,P<0.05;r=0.767,P<0.05).了解古菌包括泉古菌在农田土壤中的分布,可为评价其在生态系统和物质循环中的作用提供重要的理论依据.  相似文献   

18.
The archaea are recognized as a separate third domain of life together with the bacteria and eucarya. The archaea include the methanogens, extreme halophiles, thermoplasmas, sulfate reducers and sulfur metabolizing thermophiles, which thrive in different habitats such as anaerobic niches, salt lakes, and marine hydrothermals systems and continental solfataras. Many of these habitats represent extreme environments in respect to temperature, osmotic pressure and pH-values and remind on the conditions of the early earth. The cell envelope structures were one of the first biochemical characteristics of archaea studied in detail. The most common archaeal cell envelope is composed of a single crystalline protein or glycoprotein surface layer (S-layer), which is associated with the outside of the cytoplasmic membrane. The S-layers are directly exposed to the extreme environment and can not be stabilized by cellular components. Therefore, from comparative studies of mesophilic and extremely thermophilic S-layer proteins hints can be obtained about the molecular mechanisms of protein stabilization at high temperatures. First crystallization experiments of surface layer proteins under microgravity conditions were successful. Here, we report on the biochemical features of selected mesophilic and extremely archaeal S-layer (glyco-) proteins.  相似文献   

19.
Deep-sea ecosystems, such as cold seeps and hydrothermal vents, have high biomass, even though they are located in the benthic zone, where no sunlight is present to provide energy for organism proliferation. Based on the coexistence of the reduced gases and chemoautotrophic microbes, it is inferred that the energy from the reduced gases supports the biocoenosis of deep-sea ecosystems. However, there is no direct evidence to support this deduction. Here, we developed and placed a biocoenosis generator, a device that continuously seeped methane, on the 1000-m deep-sea floor of the South China Sea to artificially construct a deep-sea ecosystem biocoenosis. The results showed that microorganisms, including bacteria and archaea, appeared in the biocoenosis generator first, followed by jellyfish and Gammaridea arthropods, indicating that a biocoenosis had been successfully constructed in the deep sea. Anaerobic methane-oxidizing archaea, which shared characteristics with the archaea of natural deep-sea cold seeps, acted as the first electron acceptors of the emitted methane; then, the energy in the electrons was transferred to downstream symbiotic archaea and bacteria and finally to animals. Nitrate-reducing bacteria served as partners to complete anaerobic oxidation of methane process. Further analysis revealed that viruses coexisted with these organisms during the origin of the deep-sea biocoenosis. Therefore, our study mimics a natural deep-sea ecosystem and provides the direct evidence to show that the chemical energy of reduced organic molecules, such as methane, supports the biocoenosis of deep-sea ecosystems.  相似文献   

20.
Growth and survival of hyperthermophilic archaea in their extreme hydrothermal vent and subsurface environments are controlled by chemical and physical key parameters. This study examined the effects of elevated sulfide concentrations, temperature, and acidic pH on growth and survival of two hydrothermal vent archaea (Pyrococcus strain GB-D and Thermococcus fumicolans) under high temperature and pressure regimes. These two strains are members of the Thermococcales, a family of hyperthermophilic, heterotrophic, sulfur-reducing archaea that occur in high densities at vent sites. As actively growing cells, these two strains tolerated regimes of pH, pressure, and temperature that were in most cases not tolerated under severe substrate limitation. A moderate pH of 5.5–7 extends their survival and growth range over a wider range of sulfide concentrations, temperature and pressure, relative to lower pH conditions. T. fumicolans and Pyrococcus strain GB-D grew under very high pressures that exceeded in-situ pressures typical of hydrothermal vent depths, and included deep subsurface pressures. However, under the same conditions, but in the absence of carbon substrates and electron acceptors, survival was generally lower, and decreased rapidly when low pH stress was combined with high pressure and high temperature. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号