首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA organization into chromatin has a major influence on the cellular response to DNA damage. Recent studies in various systems ranging from yeast to human cells stress the importance of chromatin not simply as a barrier to DNA repair processes but also as an active contributor to the DNA damage response. Indeed, modulations of chromatin organization involving various degrees of rearrangements, such as histone modifications and even nucleosome displacement, can promote efficient repair and also participate in checkpoint signaling. Here, we survey recent progress in delineating how chromatin rearrangements provide crosstalk with the DNA damage response. In particular, we highlight new data on histone dynamics at damage sites and discuss their functional importance for the stable propagation of specific chromatin states.  相似文献   

2.
The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding patterns, but also radially. Specific MSL3-binding sites, the majority of which have been demonstrated earlier to be dosage compensated DNA sequences, located on the X chromosomes, and actively transcribed in interphase, are positioned at the periphery of mitotic chromosomes. This potentially describes a connection between the DNA/protein content of chromatin loci and their contribution to mitotic chromosome structure. Live high-resolution observations of consecutive condensation states in MSL3-GFP expressing cells could provide additional details regarding the condensation mechanisms.  相似文献   

3.
Studies in organisms belonging to different eukaryotic kingdoms have revealed that the structural state of chromatin is controlled by interactions of DNA, small RNAs and specific proteins, linked to a self-reinforcing complex network of biochemical activities involving histone and DNA modifications and ATP-dependent nucleosome remodeling. However, these findings must now be reinterpreted in light of the recent discovery of the highly dynamic character of interphase chromosomes exemplified by the constant flux of enzymatic and structural proteins through both eu- and heterochromatin and by short- and long-range chromosome movements in the nucleus. The available data on chromosome organization in Arabidopsis thaliana and links between proteins influencing chromatin structure and DNA and histone modifications documented in this model plant provide strong supportive evidence for the dynamic nature of chromosomes.  相似文献   

4.
5.
6.
Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.  相似文献   

7.
8.
The expression of genes in mammalian cells depends on many factors including position in the cell cycle, stage of differentiation, age, and environmental influences. As different groups of genes are expressed, their packaging within chromatin changes and may be detected at the chromsomal level. The organization of DNA within a chromosome is determined to a large extent by the positively charged, highly conserved histones. Histone subtypes and the reversible chemical modifications of histones have been associated with gene activity. Active or potentially active genes have been associated with hyperacetylated histones and inactive genes with nonacetylated histones. Sodium butyrate increases the acetylation levels of histones in cell cultures and acts as both an inducer of gene activity and as a cell-cycle block. We describe a method to label the interphase distribution of DNA associated with various histone acetylation stages on chromosomes. Nucleosomes from untreated and butyrate-treated HeLa cells were fractionated by their acetylation level and the associated DNA labeled, and hybridized to normal human chromosomes. In the sodium butyrate-treated cells the resulting banding patterns of the high- and low-acetylated fractions were strikingly different. DNA from low-acetylated chromatin labeled several pericentric regions, whereas hybridization with DNA from highly acetylated chromatin resulted in a pattern similar to inverse G-bands on many chromsomes. The results from noninduced cells at both high and low acetylation levels were noticeably different from their induced counterparts. The capture and hybridization of DNA from interphase chromatin at different acetylation states provides a “snap-shot” of the distribution of gene activity on chromosomes at the time of cell harvest. Edited by: P.B. Moens  相似文献   

9.
10.
11.
Histone H1     
Linker histones of which histone H1 is a representative are a diverse family of architectural proteins within the eukaryotic nucleus. These proteins have a variety of structures, but invariably contain a region enriched in lysine, serine, alanine and profine. All metazoan histone His also include a structured domain that binds to DNA through a helix-turn-helix motif. By binding to the linker DNA flanking the nucleosome core they contribute to the assembly of higher-order chromatin structures. Surprisingly, the use of “knockout” technology to eliminate histone H1 in isolated cells and Xenopus does not prevent the assembly of chromosomes or nuclei, however specific genes are activated or repressed indicative of targeted regulatory functions. A dual role for histone HI in chromatin structure and gene regulation might contribute to epigenetic phenomena in which heritable states of gene activity are maintained through mechanisms independent of gene sequence. This may have important implications for biotechnological and medical research.  相似文献   

12.
The nucleosomal organization of active and repressed alpha subtype histone genes has been investigated by micrococcal nuclease digestion of P. lividus sperm, 32-64 cell embryo and mesenchyme blastula nuclei, followed by hybridization with 32P-labeled specific DNA probes. In sperms, fully repressed histone genes are regularly folded in nucleosomes, and exhibit a greater resistance to micrococcal nuclease cleavage than bulk chromatin. In contrast, both coding and spacer alpha subtype histone DNA sequences acquire an altered conformation in nuclei from early cleavage stage embryos, i.e., when these genes are maximally expressed. Switching off of the alpha subtype histone genes, in mesenchyme blastulae, restores the typical nucleosomal organization on this chromatin region. As probed by hybridization to D.melanogaster actin cDNA, actin genes retain a regular nucleosomal structure in all the investigated stages.  相似文献   

13.
14.
We investigated the chromatin organization of living cells with a combination of recently developed approaches for histone and DNA labeling. Nucleosomal DNA was labeled with a histone H2B-GFP (green fluorescent protein) fusion protein and the chromatin organization of living HeLa cells was analyzed by high resolution confocal microscopy. Within the perinuclear and perinucleolar regions chromatin was organized into large-scale fibers of 2 to 8 microm in length and 300 to 500 nm in diameter. Within the nuclear interior we observed similar large-scale fibers, but in addition focal as well as diffuse forms of organization. Comparison with standard labeling and detection procedures revealed major differences in the chromatin organization observed. Chromatin organization revealed by the distribution of histone H2B-GFP was directly compared with the functional organization of chromatin by Cy3-dUTP labeling of DNA replicating at a specific time. DNA regions replicating at a specific time display characteristic physical and functional properties. Analysis of Cy3-labeled foci revealed that they are associated with all three forms of chromatin organization (fibrillar, focal and diffuse). In particular, Cy3-labeled foci appeared as discontinuous regions of large-scale fibers. These results demonstrate that large-scale chromatin fibers have discontinuous functional characteristics.  相似文献   

15.
The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physical properties of the chromatin fiber and specific molecular interactions as drivers of nuclear order.  相似文献   

16.
17.
18.
Genomewide histone acetylation microarrays   总被引:2,自引:0,他引:2  
Histone acetylation and methylation are important regulators of gene activity. Chromatin immunoprecipitation (ChIP or ChrIP) has made it possible to examine not only the state of histone acetylation at a gene but also that of histone methylation and may soon be extended to other histone modifications such as phosphorylation and ubiquitination. In principle such studies are possible as long as an antibody is available to the particular histone modification. Once a target gene is identified it is instructive to see the effect of mutating putative enzymes responsible for the modification to determine how a particular enzyme is responsible for altering chromatin of that gene. Although specific target genes have been studied that contain such modifications recent technical advances have made it possible to study histone modifications genomewide. This not only allows for alternate views of particular paradigms to be investigated, but also uncovers chromosomal patterns of histone modification that would be missed in analyzing individual genes. We describe here an approach to rapidly study histone modifications genomewide by combining chromatin immunoprecipitation and DNA microarrays.  相似文献   

19.
More than 20 residues within the four core histone proteins of the nucleosome are potential sites of post-translational modifications, such as methylation, acetylation, ubiquitination and phosphorylation. It has been hypothesized that specific patterns of these modifications on the nucleosome facilitate recruitment of non-histone proteins to chromatin. When such modifications are restricted to particular regions of the genome, they seem to play an important role in creating specific chromatin domains. However, more recent results suggest that some histone modifications, particularly those that exist on a genome-wide scale, act to reduce nonspecific binding by chromatin proteins involved in silencing. This decrease of promiscuous binding ensures that the silent chromatin proteins are not titrated away from their normal locations on chromosomes. We suggest that preventing such promiscuous binding of chromatin proteins is an important part of generating specificity to create chromatin domains and overall chromosome organization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号