首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响   总被引:2,自引:0,他引:2  
王红光  于振文  张永丽  王东  石玉 《生态学报》2012,32(6):1861-1870
摘要:2007—2008年度以高产冬小麦品种济麦22为材料,设置2个拔节水灌溉时期,为拔节期和拔节后10 d;3个目标相对含水量,灌水后0~140 cm土层土壤相对含水量分别达到65%、75%、80%,以W1、W2、W3表示拔节期灌水处理,DW1、DW2、DW3表示拔节后10 d灌水处理;开花期均灌水至0~140 cm土层土壤相对含水量为70%,研究推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响。结果表明:(1)W2和DW2处理有利于提高0~60 cm土层土壤硝态氮含量,促进籽粒氮素积累;营养器官贮藏氮素向籽粒的转运量、籽粒产量和氮肥偏生产力分别高于W1和DW1,与W3和DW3处理无显著差异;开花后植株氮素积累量、籽粒蛋白质含量和水分利用效率分别高于W3和DW3,是拔节期和拔节后10 d灌水的最优处理。(2)W2和DW2处理比较,DW2成熟期100~140 cm土层硝态氮残留量低于W2,籽粒产量、籽粒蛋白质含量、氮素吸收效率、氮肥偏生产力和水分利用效率均显著高于W2,是本试验条件下的最佳灌水方案。2008—2009生长季试验各处理变化趋势同2007—2008年度。  相似文献   

2.
在田间试验条件下, 以中穗型小麦(Triticum aestivum)品种‘山农15’和大穗型品种‘山农8355’为供试材料, 设置3个0-140 cm土层土壤相对含水量处理: W0 (拔节期65%, 开花期60%)、W1 (拔节期70%, 开花期70%)、W2 (拔节后8天70%, 开花后8天70%), 采用测墒补灌的方法补充土壤水分达到目标相对含水量, 对两个不同穗型小麦品种的耗水特性和干物质积累与分配进行了研究。结果表明: (1)两品种籽粒产量均以W0处理最低, ‘山农15’ W1和W2处理无显著差异, ‘山农8355’ W1处理显著高于W2处理; 两品种W1处理的水分利用效率和灌溉水利用效率均显著高于W2处理。‘山农15’ W1处理的籽粒产量和灌溉水利用效率分别显著低于和高于‘山农8355’的W1处理, 水分利用效率无显著差异; 两品种W2处理的籽粒产量、水分利用效率和灌溉水利用效率均无显著差异。(2)两品种总耗水量以W0处理最低, ‘山农15’ W1处理显著低于W2处理, ‘山农8355’两处理无显著差异; 两品种W1处理的土壤供水量及其占总耗水量的比例显著高于W2处理。‘山农15’ W1处理的总耗水量和灌水量占总耗水量的比例显著低于‘山农8355’, 土壤供水量占总耗水量的比例显著高于‘山农8355’; 两品种W2处理总耗水量, 土壤供水量及其占总耗水量的比例无显著差异。(3)两品种W1处理成熟期干物质积累量显著高于其他处理, W1处理提高了‘山农8355’开花后干物质积累量及其对籽粒的贡献率, 对‘山农15’无显著影响。‘山农15’ W1和W2处理成熟期干物质积累量显著低于‘山农8355’, 开花前贮藏同化物向籽粒的转运量和转运率、对籽粒的贡献率均显著高于‘山农8355’, 开花后干物质积累量及其对籽粒的贡献率低于‘山农8355’。综合考虑干物质积累与分配、籽粒产量、水分利用效率和灌溉水利用效率, W1处理是两品种节水高产的最佳土壤相对含水量处理。  相似文献   

3.
测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响   总被引:6,自引:0,他引:6  
2007-2009年,在田间条件下,以冬小麦品种济麦22为材料,以0-140 cm土层平均土壤相对含水量为指标设计4个测墒补灌试验处理:W0(土壤相对含水量为播种期80%+拔节期65%+开花期65%)、W1(土壤相对含水量为播种期80%+拔节期70%+开花期70%)、W2(土壤相对含水量为播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量为播种期90%+拔节期80%+开花期80%),研究不同水分处理对冬小麦氮素积累与转运、籽粒产量、水分利用效率及土壤硝态氮含量的影响。结果表明:(1)成熟期小麦植株氮素积累量为W1处理最高,W3处理次之,W0和W2处理最低,W0和W2处理间无显著差异;氮素向籽粒的分配比例为W2处理显著低于W1处理,W0、W1、W3处理间无显著差异。开花期和成熟期营养器官氮素积累量、营养器官氮素向籽粒中的转移量、成熟期籽粒氮素积累量均为W1>W3>W2>W0,各处理间差异显著。(2)随着小麦生育进程的推进,0-200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期W0和W1处理0-200 cm土层土壤硝态氮含量较低,W2和W3处理120-200 cm土层土壤硝态氮含量较高。(3)W0处理小麦氮素吸收效率、利用效率和氮肥偏生产力最低;随灌水量的增加,氮素利用效率呈先升高后降低趋势;W1处理小麦对氮素的吸收效率和利用效率较高,氮肥偏生产力最高。W0处理水分利用效率较高,但籽粒产量最低;灌水处理籽粒产量、灌溉水利用效率和灌溉效益两年度均随测墒补灌量的增加而显著降低。在本试验条件下,综合氮素利用、籽粒产量、灌溉水利用效率及土壤中硝态氮的淋溶,W1是高产节水的最佳灌溉处理,在2007-2008年和2008-2009年度补灌量分别为43.83 mm和13.77 mm。  相似文献   

4.
土壤深松和补灌对小麦干物质生产及水分利用率的影响   总被引:7,自引:0,他引:7  
研究一次深松耕作后土壤水分对冬小麦籽粒产量和水分利用率的影响,为小麦节水高产栽培提供理论依据.于2008-2009和2009-2010两个小麦生长季,选用高产小麦品种济麦22,采取测墒补灌的方法,研究了深松+旋耕和旋耕2种耕作方式下土壤水分对小麦0-200 cm土层土壤含水量、干物质积累与分配、籽粒产量及水分利用率的影响.结果表明,(1)深松+旋耕40-180 cm土层土壤含水量低于旋耕处理;旗叶光合速率和水分利用率,开花后干物质积累量及其对籽粒的贡献率显著高于旋耕处理.(2)W3(补灌至0-140 cm土层土壤相对含水量播种期为85%,越冬期80%,拔节和开花期75%)成熟期0-200cm土层土壤含水量与W1(播种期80%,越冬期80%,拔节和开花期75%)和W2处理(播种期80%,越冬期85%,拔节和开花期75%)无显著差异;W3和W'3(播种期85%,越冬期85%,拔节和开花期75%)60-140 cm土层土壤含水量分别低于W4(播种期85%,越冬期85%,拔节和开花期75%)和W'4(播种期90%,越冬期85%,拔节和开花期75%)处理;W3和W'3灌浆中后期旗叶光合速率较高,开花后干物质积累量及其对籽粒的贡献率显著高于其他处理,获得高的籽粒产量和水分利用率.综合考虑籽粒产量、水分利用率和灌溉效益,在深松+旋耕条件下,两年度分别以W3和W'3为节水高产的最佳处理.  相似文献   

5.
于2012—2014年两个冬小麦生长季,在大田条件下设置:全生育期不灌水(W0)处理,当地定量节水灌溉(拔节期和开花期均灌水60 mm,W1)处理,依据0~20 cm (W2)、0~40 cm (W3)、0~60 cm (W4)和0~140 cm (W5)土层土壤含水量测墒补灌处理,于拔节期和开花期补灌至土壤相对含水量为田间持水量的65%和70%,研究依据不同土层土壤含水量测墒补灌对冬小麦耗水特性、光合速率和籽粒产量的影响.结果表明:各处理拔节期灌水量为W1、W4>W3>W2、W5,开花期灌水量和总灌水量均为W5>W1、W4>W3>W2,W3总耗水量显著高于W2处理,与W1、W4和W5处理无显著差异.W3土壤贮水消耗量高于W1、W4和W5处理,其中,W3在拔节至开花阶段和开花至成熟阶段对40~140 cm和60~140 cm土层土壤贮水消耗量均显著高于其余灌水处理.灌浆中期W3处理小麦旗叶光合速率、蒸腾速率和水分利用效率最高,W1和W4处理次之,W0处理最低.W3处理两个生长季的籽粒产量分别为9077和9260 kg·hm-2,水分利用效率分别为20.7和20.9 kg·hm-2·mm-1,均显著高于其余处理,灌溉水生产效率最高.综合考虑灌水量、籽粒产量和水分利用效率,小麦拔节期和开花期适宜进行测墒补灌的土层深度为0~40 cm.  相似文献   

6.
于2013—2014和2014—2015年两个小麦生长季进行田间试验,供试品种为‘济麦22’,设置5个处理,分别为W0(全生育期不灌水)、W1(越冬期不灌水,拔节期和开花期分别补灌至0~40 cm土层土壤相对含水量为65%和70%)、W2(越冬期、拔节期和开花期分别补灌至土壤相对含水量为70%、65%和70%)、W3(越冬期、拔节期和开花期分别补灌至土壤相对含水量为75%、65%和70%)和W4(越冬期、拔节期和开花期均定量灌溉60 mm),研究越冬期测墒补灌对小麦耗水特性和光合有效辐射截获利用的影响.结果表明: 总灌水量及其占总耗水量的比例为W4>W3>W2>W1>W0;土壤贮水消耗量占总耗水量的比例为W0>W1、W2>W3、W4;总耗水量和开花至成熟期的耗水量均为W4>W2、W3>W1>W0.两生长季小麦开花后冠层光合有效辐射(PAR)截获率为W4>W2、W3>W1>W0,而花后冠层PAR反射率各处理间的表现与之相反.灌水处理中干物质净积累量为W4处理最高,W1处理最低.两生长季小麦越冬期0~40 cm土层土壤相对含水量补灌至70%的W2处理籽粒产量仅低于定量灌溉的W4处理,水分利用效率和灌溉效益最高,是本试验条件下节水高产的最优处理.  相似文献   

7.
为研究依据不同土层的土壤质量含水量进行测墒补灌对小麦(Triticum aestivum)拔节期与开花期旗叶荧光特性和水分利用效率的影响, 2011-2012和2012-2013年度两个小麦生长季, 设置0-20 (D1)、0-40 (D2)、0-60 (D3)和0-140 cm (D4) 4个土层进行处理, 测定土壤质量含水量, 以各土层平均土壤相对含水量在拔节期为65%和在开花期为70%为目标相对含水量进行补灌, 全生育期不灌溉为对照(D0)。结果表明: (1) D2处理拔节至开花期40-100 cm土层和开花至成熟期40-140 cm土层的土壤贮水消耗量高于其他处理, 开花至成熟期是小麦贮水消耗的最大时期。(2)开花后旗叶水分利用效率、PSII潜在活性(Fv/Fo)、PSII电子传输活性(Fm/Fo)、相对电子传递速率(ETR)和光化学猝灭系数(qP) D2处理最高, D3次之, D0最低。(3)两个小麦生长季, 各处理的籽粒产量为D2 > D3 > D1 > D4 > D0, D2的水分利用效率分别为20.19 kg·hm-2·mm-1和21.92 kg·hm-2·mm-1, 高于D0、D3和D4处理, 与D1处理间无显著差异。综合分析, 小麦拔节期和开花期依据0-40 cm土层的土壤质量含水量进行测墒补灌可兼顾高产和高水分利用效率。  相似文献   

8.
于2012—2014年两个小麦生长季,以全生育期不灌水(W_0)为对照,设置3个测墒补灌处理,即拔节和开花期使0~140 cm土层土壤平均相对含水量分别为65%(W_1)、70%(W_2)和75%(W_3),研究其对土壤水利用、小麦氮素积累转运和土壤硝态氮分布及籽粒产量的影响.结果表明:W_2处理土壤贮水消耗量及占总耗水量的比例和灌溉水占总耗水量的比例较高,且吸收利用100~140 cm土层土壤贮水量较高.开花期营养器官氮素积累量及开花后氮素积累量均为W_2、W_3W_1W_0,成熟期营养器官氮素积累量为W_3W_2W_1W_0,营养器官氮素向籽粒中的转移量和成熟期籽粒氮素积累量均为W2W3W1W0.成熟期0~60cm土层硝态氮含量表现为W_0W_1W_2W_3,80~140 cm土层为W3显著高于其他处理,140~200 cm土层各处理间无显著差异.W_2处理的籽粒产量、水分利用效率、氮素吸收效率及氮肥偏生产力均最高.在本试验条件下,综合考虑籽粒产量、水分利用效率、氮素吸收效率及土壤硝态氮的淋溶,W_2处理是高产节水生态安全的最佳灌溉处理.  相似文献   

9.
测墒补灌对小麦旗叶光合特性及酶活性的影响   总被引:1,自引:1,他引:0  
以‘济麦20’为供试材料,通过田间试验,在拔节期和开花期设置土壤相对含水量为65%(W65)、70%(W70)和75%(W75)的测墒补灌处理,以全生育期不灌溉为对照(CK),研究不同测墒补灌水平对旗叶光合特性及酶活性的影响.结果表明: W70处理小麦旗叶净光合速率、蔗糖含量和磷酸蔗糖合成酶(SPS)活性在花后14~21 d均显著高于其他处理.成熟期W70处理干物质量与W75处理无显著差异,但显著高于W65处理和CK;W70处理单茎质量显著高于其他处理.W70处理超氧化物歧化酶和过氧化氢酶活性及可溶性蛋白含量在花后14~28 d显著高于其他处理,丙二醛含量在花后14~28 d显著低于CK和W65处理,与W75处理无显著差异.2012—2013年和2013—2014年W70处理小麦籽粒产量分别为8941.4和9125.4 kg·hm-2,与W75处理无显著差异,显著高于W65处理和CK;W70处理水分利用效率显著高于其他处理.在本试验条件下,拔节期和开花期0
~140 cm土层平均土壤相对含水量均以70%为节水高产高效的最佳灌溉处理.  相似文献   

10.
通过大田试验,研究了沟垄集雨种植结合不同补灌量处理对冬小麦光合器官、光合速率、产量和水分利用效率的影响.结果表明:沟垄宽度各为60 cm时,集雨种植不灌溉(T1)、返青期种植沟补灌375 m3·hm-2(T2)和种植沟补灌750 m3·hm-2(T3)3个处理较平作灌水750 m3·hm-2(畦灌,T4)处理的小麦籽粒产量分别提高2.8%、9.6%和18.9%,收获系数提高2.0%~ 8.5%,旗叶叶绿素含量提高41.9% ~64.4%,整个生育期内0~ 40 cm土壤含水量增加了0.1%~4.6%;开花期和灌浆期的叶片光合速率分别较T4处理提高了22.3%~ 54.2%和-4.3%~67.2%,农田总水分利用效率较T4处理分别提高17.9%、10.4%和15.4%,比平作不灌水处理(CK)提高69.3%、58.6%和65.7%;降水利用效率较CK提高94.3% ~ 124.5%;T2、T3处理各生育阶段叶面积均显著高于T4处理,灌溉水利用效率分别比T4处理提高119.1%和18.8%.在灌溉量减少50%的条件下,集雨种植比畦灌处理能维持较高的籽粒产量,显著提高灌溉水利用效率,尤其是在降雨量偏少的年份,可以显著提高小麦水分利用效率.  相似文献   

11.
调亏灌溉对冬小麦耗水特性和水分利用效率的影响   总被引:10,自引:2,他引:10  
以高产中筋冬小麦品种济麦22为材料,在山东兖州小孟镇史王村进行田间试验,研究了调亏灌溉对冬小麦耗水特性和水分利用效率的影响.结果表明:在全生育期降水228 mm条件下,W1(土壤相对含水量:播种期80%+拔节期70%+开花期70%)和W4(土壤相对含水量:播种期90%+拔节期85%+开花期85%)处理总耗水量高于W0(土壤相对含水量:播种期80%+拔节期65%+开花期65%)、W2(土壤相对含水量:播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量:播种期90%+拔节期80%+开花期80%)处理,W1和W4处理间无显著差异;W1处理增加了0~200 cm土层土壤贮水消耗量,降低了小麦拔节至开花期的耗水模系数,提高了开花至成熟期的耗水模系数;W4处理在开花至成熟期、拔节至开花期的耗水量和耗水模系数均较大.调亏灌溉条件下,W0处理水分利用效率较高,但产量最低;随灌溉量增加,其他处理水分利用效率呈先增加后降低的趋势.耗水量最高的W1和W4处理产量也最高,W1处理灌溉水利用效率和灌溉效益均高于W4处理,为本试验条件下高产节水的最佳处理.  相似文献   

12.
Winter wheat is threatened by drought in the Huang-Huai-Hai Plain of China, thus, effective water-saving irrigation practices are urgently required to maintain its high winter wheat production. This study was conducted from 2012 to 2014 to determine how supplemental irrigation (SI) affected soil moisture, photosynthesis, and dry matter (DM) production of winter wheat by measuring the moisture in 0–20 cm (W2), 0–40 cm (W3), and 0–60 cm (W4) soil profiles. Rainfed (W0) and local SI practice (W1, irrigation with 60 mm each at jointing and anthesis) treatments were designed as controls. The irrigation amount for W3 was significantly lower than that for W1 and W4 but higher than that for W2. The soil relative water content (SRWC) in 0–40 cm soil profiles at jointing after SI for W3 was significantly lower than that for W1 and W4 but higher than that for W2. W3 exhibited lower SRWC in 100–140 and 60–140 cm soil profiles at anthesis after SI and at maturity, respectively, but higher root length density in 60–100 cm soil profiles than W1, W2 and W4. Compared with W1, W2 and W4, photosynthetic and transpiration rates and stomatal conductance of flag leaves for W3 were significantly greater during grain filling, particularly at the mid and later stages. The total DM at maturity, DM in grain and leaves, post-anthesis DM accumulation and its contribution to grain and grain filling duration were higher for W3. The 1000-grain weight, grain yield and water use efficiency for W3 were the highest. Therefore, treatment of increasing SRWC in the 0–40 cm soil profiles to 65% and 70% field capacities at jointing and anthesis (W3), respectively, created a suitable soil moisture environment for winter wheat production, which could be considered as a high yield and water-saving treatment in Huang-Huai-Hai Plain, China.  相似文献   

13.
《植物生态学报》2014,38(7):757
Aims Our objective was to determine the effects of supplemental irrigation by measuring the moisture content at jointing and anthesis on fluorescence characteristics and water use efficiency in flag leaves of wheat (Triticum aestivum).
Methods Four irrigation treatments were imposed, i.e. the average relative soil water content in the soil layer of 0–20 cm (D1), 0–40 cm (D2), 0–60 cm (D3), and 0–40 cm (D4) were raised to 65% (at jointing) and 70% (at anthesis), respectively, by supplemental irrigation, with zero-irrigation as a control treatment (D0) in 2011–2012 and 2012–2013.
Important findings The soil water consumption in the D2 treatment was significantly higher than in other treatments in the 40–100 cm soil layer from jointing to anthesis and in the 40–140 cm soil layer from anthesis to maturity; the latter stage showed the highest soil water consumption during wheat growing. The flag leaves of wheat plants in the D2 treatment showed the highest water use efficiency, potential photosynthesis activity of PSII (Fv/Fo), electronic transpiration activity of PSII (Fm/Fo), relative electron transport rate (ETR) and photochemistry quenching index (qP) after anthesis, followed by the D3 treatment, with those in the D0 treatment having the lowest values. In both growing seasons, the grain yield was ranked in the order of D2 > D3 > D1 > D4 > D0 among the treatments; water use efficiency (WUE) in the D2 treatment was 20.19 kg·hm–2·mm–1 and 21.92 kg·hm–2·mm–1, respectively, higher than in the D0, D3, and D4 treatments. No significant difference was observed in any of the variables between the D1 and D2 treatments. Hence, the D2 treatment, with application of irrigation based on the soil moisture measurement in the 0–40 cm soil layer at jointing and anthesis, is the most optimal treatment for achieving high grain yield and high WUE.  相似文献   

14.
不同施氮量下灌水量对小麦耗水特性和氮素分配的影响   总被引:6,自引:0,他引:6  
研究了不同施氮量条件下灌水量对高产小麦耗水特性和氮素分配利用的影响。设置4个施氮水平:0kg·hm-2(N0)、120kg·hm-2(N1)、210kg·hm-2(N2)和300kg·hm-2(N3),在每个施氮水平下设置4个灌水量处理:不浇水(W0)、底墒水+拔节水(W1)、底墒水+拔节水+开花水(W2)、底墒水+拔节水+开花水+灌浆水(W3),每次灌水量60mm。结果表明:(1)在N0水平下W0处理日耗水量以拔节至开花期最高,在N1水平下,拔节至开花期日耗水量与开花至成熟期的无显著差异。同一施氮水平下,小麦开花后总耗水量、耗水模系数和日耗水量随灌水量的增加而提高,但产量随灌水量的增加先升高后降低。(2)同一施氮水平下,成熟期W1处理20—140cm各土层土壤含水量低于W2和W3处理,140—200cm土层土壤含水量与W2处理无显著差异;W1处理0—40cm土层土壤硝态氮含量及植株氮素在籽粒中的分配比例高于W2和W3处理,100—140cm土层土壤硝态氮含量及植株氮素在营养器官中的分配量和分配比例低于W2和W3处理。表明灌溉底墒水和拔节水的W1处理,促进了小麦对20—140cm土层土壤水的吸收利用,减少了土壤硝态氮向100cm以下土层的淋溶,而且有利于营养器官中氮素向籽粒的再分配,水分和氮素利用效率较高。(3)在试验条件下,施纯氮210kg·hm-2、灌溉底墒水和拔节水的N2W1处理,籽粒产量最高,水分利用效率和氮素利用效率较高,可供生产中参考。  相似文献   

15.
不同土层测墒补灌对冬小麦耗水特性及产量的影响   总被引:2,自引:0,他引:2  
于2010-2011年选用高产小麦品种济麦22进行大田试验,设置0~20 cm(W1)、0~40 cm(W2)、0~60 cm(W3)和0~140 cm(W4)4个测墒补灌土层,于越冬期(目标相对含水量均为75%)、拔节期(目标相对含水量均为70%)和开花期(目标相对含水量均为70%)进行测墒补灌,以全生育期不灌水处理(W0)为对照,研究不同土层测墒补灌对冬小麦耗水特性及产量的影响.结果表明: 小麦越冬期、拔节期和开花期补充灌水量为W3>W2>W1,W4处理小麦越冬期和拔节期补充灌水量较少,但开花期补灌量显著高于其他处理;全生育期补灌量占总耗水量的比例为W4、W3>W2>W1.土壤水消耗量占总耗水量的比例为W1>W2>W3>W4;随测墒补灌土层深度的增加,土壤水消耗量占总耗水量的比例减少;W2处理80~140 cm和160~200 cm土层土壤水消耗量显著高于W3和W4处理.各处理的总补灌量为W3>W4>W2>W1;籽粒产量为W2、W3、W4>W1>W0,W2、W3、W4间无显著差异;水分利用效率为W2、W4>W0、W1>W3,W2与W4之间无显著差异.综合考虑灌水量、籽粒产量和水分利用效率,W2处理是本试验条件下的最佳处理,即以0~40 cm土层测墒补灌效果最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号