首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
作为木质素降解的关键酶之一,漆酶在森林生态系统养分循环过程中占有重要的地位。通过构建cDNA克隆文库,从mRNA水平上研究了亚热带喀斯特原生林(常绿落叶阔叶混交林)和红壤马尾松林(针叶林)凋落物层(O层)及表土层(A层,0—20 cm)中担子菌漆酶基因多样性及其群落结构。结果发现,O层担子菌漆酶基因多样性、丰富度和均匀度均以原生林远远高于马尾松林,而A层与O层的趋势相反;同一森林生态系统,原生林土壤O层中担子菌漆酶基因多样性和种群丰富度高于土壤A层,而马尾松林则O层明显低于A层。"目"分类地位上,伞菌目在两森林生态系统中占绝对优势,且在马尾松林O层中比例高达90.2%;原生林O层和马尾松林A层中存在丰富的多孔菌目和钉菇目;红菇目仅在原生林A层中检测到,且比例为12.4%。群落结构上,与原生林O层和马尾松林A层相比,原生林A层和马尾松林O层含漆酶基因的担子菌种群分布极不均匀,分别存在1和2个绝对优势种群(克隆子数占各克隆库20%以上),且分别与伞菌属、小菇属和侧耳属有较高的氨基酸相似性。此外,两森林土壤中漆酶活性、碳、氮、木质素含量均以原生林显著高于马尾松林,且O层显著高于A层。这些结果表明亚热带阔叶林和针叶林不同土壤层位中降解木质素的担子菌漆酶基因多样性和群落结构有着极大的差异,而这种差异与微生物底物的可利用性、多样性以及土壤pH等因素的综合作用密切相关。  相似文献   

2.
桂西北喀斯特区原生林与次生林凋落叶降解和养分释放   总被引:2,自引:0,他引:2  
凋落叶降解及养分释放研究对喀斯特生态脆弱区森林生态系统的恢复与重建具有重要指导意义。本文选取桂西北喀斯特区3种原生林与3种次生林进行比较,研究其凋落叶降解与降解过程中的营养元素释放规律以及降解速率的影响因子。结果表明,原生林凋落叶的降解速率略大于次生林。C、N、K元素在前180天释放速率较快,随后趋于稳定。次生林凋落叶总P含量在降解初始阶段呈净积累,随后净释放,而原生林的凋落叶在降解360天后仍呈现P素净积累。相关分析表明,凋落叶降解速率与凋落叶初始总N、木质素含量及木质素:N比值呈负相关,与C:N比呈正相关。综合比较发现,次生林圆叶乌桕(Sapium rotundifolium Hemsl)凋落叶的降解速率与养分释放速率较快,是喀斯特退化土地及植被恢复过程中潜在的优势种和建群种。  相似文献   

3.
魏珊  徐明  张姣  文春玉  张健 《菌物学报》2023,(7):1495-1505
凋落物作为森林土壤有机质的重要来源,对森林生态系统土壤微生物群落具有重要影响。本研究以清除凋落物层马尾松林(L)和未清除凋落物层马尾松林(NL)作为调查对象,探究凋落物清除对马尾松林外生菌根真菌(EMF)群落的影响。马尾松EMF群落共鉴定出56个OTUs,隶属于2门6纲14目16科24属,且担子菌门丰富度明显高于子囊菌门;其中棉革菌属Tomentella、红菇属Russula、乳菇属Lactarius、土生空团菌属Cenococcum为优势属,特有OTUs高于共有OTUs。NL与L样地间马尾松EMF群落组成和结构差异明显,门水平上,凋落物清除增加了马尾松EMF群落子囊菌门的丰富度;属水平上,凋落物清除马尾松EMF群落土生空团菌属Cenococcum、假小垫革菌属Pseudotomentella和古根菌属Archaeorhizomyces相对丰度占比增加,而乳菇属Lactarius、红菇属Russula和绵革菌属Tomentella相对丰度占比则减少。冗余分析(RDA)表明全磷、pH和有效磷是马尾松EMF群落重要的影响因子。马尾松林凋落物清除对马尾松EMF群落组成结构产生重要影响。  相似文献   

4.
三峡库区森林生态系统有机碳密度及碳储量   总被引:12,自引:0,他引:12  
森林生态系统作为陆地生态系统的重要组成部分,在减缓全球气候变化过程中发挥重要作用.基于104块样地调查和森林资源二类清查数据,运用GIS平台,对三峡库区森林生态系统有机碳密度及储量进行研究,结果表明:(1)三峡库区森林优势树种各器官的含碳率为44.59%~54.45%,森林凋落物含碳率为30.61%~42.73%,平均为36.38%;(2)三峡库区森林生态系统平均碳密度为117.68t · hm-2,低于我国森林平均水平;植被层碳密度平均为24.15 t · hm-2,其中常绿阔叶林植被层碳密度最高,达42.80 t · hm-2;枯落物层平均碳密度为2.74 t · hm-2,土壤有机碳密度平均为9.09 kg · m-2;(3)三峡库区森林生态系统总有机碳储量为286.14×106t,其中植被层碳储量为58.72×106t,凋落物碳储量为6.67×106t,土壤碳储量为220.74×106t;(4)三峡库区马尾松林分布面积最大,其总有机碳储量为77.24×106t,占三峡库区森林有机碳总储量的26.99%;在各森林类型中,马尾松林植被层、凋落物层和土壤层有机碳储量均最高,分别达到20.70 × 106t、2.66×106t和53.89×106t;(5)三峡库区森林有机碳密度呈现"东高西低"分布格局,巴东-秭归、巫山-巫溪、石柱-武隆及江津南部有机碳密度较高.在三峡库区提高森林质量、扩大森林面积是增强森林生态系统碳汇功能的有效途径.  相似文献   

5.
凋落物的彻底降解是在凋落物和土壤酶系统的综合作用下完成,酶活性的提高有利于凋落物-土壤有机物质的分解和养分释放。通过对三峡库区30年生马尾松林凋落物分解、凋落物-土壤层酶活性季节动态及其对分解的影响进行研究,结果表明:30年生马尾松林凋落物经过540 d的分解后干重剩余率是59.80%;凋落物层酶活性季节动态明显,氧化还原酶活性均是11月最低,3月最高;土壤过氧化物酶活性季节变化显著且均是11月最低,多酚氧化酶活性9月较高,而过氧化物酶活性则是6月较高。马尾松林凋落物层酶活性与土壤层酶活性差异较大,且水解酶活性差异较氧化还原酶活性差异大,凋落物层脲酶活性、纤维素酶活性和蔗糖酶活性11月、6月、9月分别是0—5 cm土壤层的6.33倍、3.24倍、10.29倍,68.14倍、16.16倍、24.81倍,25.07倍、31.88倍、29.20倍。凋落物分解速率均与土壤、凋落物层氧化还原酶活性呈极显著"S"形曲线,与凋落物层水解酶活性呈二次函数关系,与土壤层水解酶均呈极显著的线性关系。凋落物质量能引起凋落物-土壤层酶活性变化,酶活性的改变反过来影响凋落物的分解,因此,凋落物-土壤层酶活性差异与凋落物分解阶段和对共同影响因素(凋落物质量、土壤温度、水分含量和土壤养分等)的敏感性不同有关,凋落物-土壤层酶的相互作用共同影响森林生态系统的物质循环和养分循环过程。  相似文献   

6.
湖南省森林生态系统碳储量、碳密度及其空间分布   总被引:1,自引:0,他引:1  
本研究在湖南省野外样地调查的基础上,结合湖南省2014年森林资源二类调查结果,计算出湖南省森林生态系统碳储量的空间分布格局。结果表明:湖南省森林生态系统的平均碳密度为130.69 t·hm~(-2)。其中,乔木层、灌木层、草本层、凋落物层和土壤的碳密度分别为28.36、1.77、0.90、1.36和98.30 t·hm~(-2)。植被碳密度与土壤碳密度呈显著正相关关系。土壤碳密度与凋落物层碳密度呈显著正相关关系。阔叶林碳密度最大(175.26t·hm~(-2)),其后依次为杉木林(136.81 t·hm~(-2))、马尾松林(133.84 t·hm~(-2))、柏木林(124.88t·hm~(-2))、竹林(117.29 t·hm~(-2))、杨树林(95.08 t·hm~(-2))、经济林(80.94 t·hm~(-2))、湿地松林(64.71 t·hm~(-2))、灌木林(63.73 t·hm~(-2))。湖南省森林生态系统总碳储量为1572.02Tg C,其中,乔木层、灌木层、草本层、凋落物层和土壤的碳储量分别为341.18、21.29、10.78、16.36、1182.38 Tg C。阔叶林碳储量最大(545.77 Tg C),依次为杉木林(419.91 Tg C)、马尾松林(275.58 Tg C),竹林(127.76 Tg C)、灌木林(74.44 Tg C)、经济林(71.25 Tg C)、柏木林(25.81 Tg C)、湿地松林(22.39 Tg C)、杨树林(9.11 Tg C)。在各市州中,怀化市森林生态系统碳储量最大,为267.43 Tg C;湘潭市最少,为28.12 Tg C。湖南省森林生态系统碳储量分布不均,表现为湘西南湘南湘北湘中。阔叶林、杉木林和马尾松林是湖南省森林生态系统碳储量的主要贡献者,分别占34.72%、26.71%、17.53%。  相似文献   

7.
研究珠江流域中上游广西都安地区5 种典型森林类型土壤基本理化性质, 为进一步探讨该区域森林生态系统物质循环、森林植被规划提供基础数据。通过分析不同森林类型之间土壤理化性质, 结果表明: 珠江流域都安地区5 种森林类型土壤机械组成砂粒变幅在3.63%-23.15%; 粘粒变幅在11.62%-56.61%; 细粉粒变幅在30.07%-54.34%; 粗粉粒变幅在1.84%-10.90%。不同森林类型土壤有机碳、全氮、全磷含量随着土层深度的增加而逐渐降低。对各森林类型土壤A 层(0-15 cm)减去D 层(45-60 cm)化学性质的比较, 各森林类型土壤有机碳积累大小顺序为马尾松×荷木混交林>青冈栎林>马尾松林>任豆林>桉树林; 土壤全N 积累大小顺序为马尾松×荷木混交林>青冈栎林>任豆林>马尾松林>桉树林。综合来看, 在都安地区不同森林类型对土壤保育功能提高上, 5 种森林类型影响大小顺序为马尾松×荷木混交林>青冈栎林>任豆林>马尾松林>桉树林。  相似文献   

8.
UV-B辐射对马尾松凋落叶分解和养分释放的影响   总被引:1,自引:0,他引:1  
由大气臭氧层减薄导致的UV-B辐射变化将直接影响到凋落物的分解。目前,有关UV-B辐射影响木本植物凋落物分解的研究还很少,在国内还没有开展。采用分解袋法开展了马尾松凋落叶在自然环境和UV-B辐射滤减两种辐射环境下的分解试验。结果表明:在UV-B辐射滤减环境下的马尾松凋落叶年分解速率比对照环境减慢了47.74%。UV-B辐射极显著(p<0.01)地加快了马尾松凋落叶的分解速率,促进了凋落叶中碳、磷、钾的释放和木质素的降解,对氮的释放无明显影响。研究结果意味着UV-B辐射将加快马尾松林的营养循环速度,降低马尾松林凋落物层的碳储量。  相似文献   

9.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

10.
广西十万大山地区不同植被类型土壤微生物特征   总被引:2,自引:0,他引:2  
为研究广西十万大山地区热带不同植被类型土壤微生物特征及其与土壤养分之间的关系,对次生阔叶林、马尾松林、灌草丛和撂荒地的土壤理化性质、微生物数量特征及微生物生物量碳氮磷进行了测定。结果表明:相同土层的土壤微生物总数大小依次为:次生阔叶林马尾松林灌草丛撂荒地,并随土壤深度增加而减少。土壤微生物生物量碳氮磷随土壤深度的增加而逐渐降低,在不同植被类型的土壤中差异显著。次生阔叶林、马尾松林、灌草丛的土壤微生物生物量与土壤养分呈极显著相关,而撂荒地的相关性明显低于其他3种植被类型,并且其土壤微生物生物量磷与全氮、速效氮和速效钾含量无相关性。由此可见,土壤微生物数量和微生物生物量均可作为评价十万大山森林生态系统土壤肥力的指标;可采用植被恢复手段促进土壤微生物群落的发育、改良土壤特性以促进该区域退化生态系统的恢复。  相似文献   

11.
Decomposition of plant litter by the soil microbial community is an important process of controlling nutrient cycling and soil humus formation. Fungal laccases are key players in litter-associated polyphenol degradation, but little is known about the diversity and spatial distribution of fungal species with laccase genes in soils. Diversity of basidiomycete laccase genes was assessed in a cambisolic forest soil, and the spatial distribution of the sequences was mapped in a 100-m2 plot by using polymerase chain reaction (PCR) on soil DNA extracts. Diversity of laccase sequences was higher in the organic horizon and decreased with the depth. A total of 167 different sequences sharing 44–96% oligonucleotide similarity was found in 13 soil cores harvested in the 100-m2 plot. Dissimilarity in laccase sequence content was 67% between adjacent cores; 45.5%, 35.5% and 19% of laccase sequences were attributed to ectomycorrhizal, unknown and saprotrophic basidiomycetes, respectively. Most dominant sequences were attributed to the extramatrical hyphae of known ectomycorrhizal taxa (e.g., Russulaceae) and restricted to small patches (<0.77 m2) in a specific soil horizon. Soil fungi with laccase genes occupied different niches and showed strikingly variable distribution patterns. The distribution of laccase sequences, and corresponding fungi, likely reflected a part of the oxidative potential in soils. Electronic Supplementary Material Electronic Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △^14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

13.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation,were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest,the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types,together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

14.
The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5-10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition.  相似文献   

15.
Although field studies have demonstrated an ecosystem-specific effect of experimental atmospheric nitrogen (N) deposition on litter decomposition, a mechanistic understanding of how ligninolytic microbial communities respond to atmospheric deposition is lacking. Because high levels of inorganic N suppress lignin decomposition by some basidiomycetes, it is plausible that the abundance and activity of these key microorganisms underlies differential ecosystem responses of decomposition to atmospheric N deposition. We hypothesize that: (a) atmospheric N deposition will cause an ecosystem-specific reduction in basidiomycete activity and abundance with greatest decreases in ecosystems with lignin-rich forest litter and (b) the abundance of lignin degrading basidiomycetes will be positively correlated with ligninolytic enzyme activity. To test these hypotheses, we measured the effects of experimental N deposition on the potential activity of phenol oxidase enzymes, and the abundance of basidiomycete genes encoding laccase, a primary phenol oxidase enzyme, in three hardwood forests spanning a range of leaf litter lignin content. The black oak-white oak (BOWO) contains high lignin litter, the sugar maple-basswood (SMBW) has low lignin litter, and the sugar maple-red oak (SMRO) is intermediate. An ecosystem by N deposition interaction significantly influenced phenol oxidase activity in the surface soil (P = 0.05), where phenol oxidase activity decreased with increasing experimental N deposition in the BOWO ecosystem. No consistent response to N deposition was evident for surface soil phenol oxidase activity within either the SMRO or SMBW ecosystem. This interaction did not influence laccase gene abundance. Instead, basidiomycete laccase gene abundance was reduced by experimental N deposition (main effect) in surface soil. There was only a weak correlation between basidiomycete laccase gene abundance and potential phenol oxidase enzyme activity, suggesting that the abundance of organisms possessing laccase genes may not control phenol oxidase activity in soil. Our results suggest that the regulation of laccase gene expression may mediate the decomposition response to atmospheric N deposition.  相似文献   

16.
The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO2 effluxes of litter layer and mineral soil from total soil respiration (SR) and determine the relative importance of changing temperature and moisture mediating the fluxes. We measured respiration in an oak-dominated forest with or without the O horizon for 1 year within the Oak Openings Region of northwest Ohio. Mineral soil and O horizon respiration were subtracted from mineral soil respiration (MSR) to estimate litter respiration (LR). Measurements were grouped by oak phenology to correlate changes in plant activity with respiration. The presence of the O horizon represented a large source of seasonal variation in SR. The timing of oak phenology explained some of the large changes in both SR and LR, and their relationship with temperature and moisture. The contribution to SR of respiration from the mineral soil was greatest during pre-growth and pre-dormancy, as evident by the low LR:MSR ratios of 0.65 ± 0.10 (mean ± SE) and 0.69 ± 0.03, respectively, as compared to the other phenophases. Including moisture increased our ability to predict MSR and SR during the growth phenophase and LR for every phenophase. Temperature and moisture explained 85% of the variation in MSR, but only 60% of the variation in LR. The annual contribution of O horizon to SR was 48% and the ratio of litter to soil respiration was tightly coupled over a wide range of environmental conditions. Our results suggest the presence of the O horizon is a major mediator of SR.  相似文献   

17.
Fungal colonization of litter has been described mostly in terms of fructification succession in the decomposition process or the process of fungal ligninolysis. No studies have been conducted on litter colonization by arbuscular mycorrhizal fungi (AMF) and their relationship with the presence of saprotrophic fungi. The aim of the present study was to evaluate the relationships that exist in simultaneous leaf litter colonization by AMF and saprotrophic fungi and the relationships between rates of litter and associated root colonization by AMF at different soil depths. We selected Eugenia sp. and Syzygium sp. in a riparian tropical forest, with an abundant production of litter (O horizon), we evaluated litter and root colonization at different depths, its C:N ratios, and the edaphic physico-chemical parameters of the A horizon immediately below the litter layer. Litter colonization by saprotrophic fungi and AMF increased with depth, but the saprotrophic fungal colonization of some litter fragments decreased in the lowermost level of the litter while AMF litter colonization continued to increase. Plant roots were present only in the middle and bottom layers, but their mycorrhizal colonization did not correlate with litter colonization. The external hyphae length of AMF is abundant (ca. 20 m g(-1) sample) and, in common with sample humidity, remained constant with increasing depth. We conclude that in zones of riparian tropical forest with abundant sufficient litter accumulation and abundant AMF external hyphae, the increase in litter colonization by AMF with depth correlates to the colonization by saprotrophic fungi, but their presence in the deepest layers is independent of both litter colonization by saprotrophic fungi and root colonization by AMF.  相似文献   

18.
The aim of this study was to analyse the amount and qualitative characteristics of organic matter (OM) in the litter horizon (considering leaf litter at different decomposition stages) and underlying soil to a 30-cm depth in a beech stand on the Apennines in southern Italy. Distribution of major nutrients as well as fungal and microbial biomass were also evaluated, in addition to beech leaf nutrient content monitor from full expansion to abscission in order to estimate annual nutrient input to soil from litterfall and nutrient retranslocation before abscission. OM was significantly higher in leaf litter. C/N ratio and the Na, Mn, Fe levels also decreased along the decomposition continuum, whereas N and S contents slowly decreased with soil depth. Generally, leaf nutrient content was also significantly lower in dead leaves, indicating efficient retranslocation to persistent organs. Fungal biomass was the highest in leaf layers, with no significant changes between spring and autumn samplings. Enzyme activities did not differ significantly along the decomposition continuum but marked decreases were found in the upper soil layer; these remained relatively constant, with the exception of laccase, at deeper soil depths. No seasonal effect on enzyme activities and OM content was found.  相似文献   

19.
亚热带毛竹扩张对杉木林土壤微生物残体碳积累的影响及机制尚不清楚。以毛竹向杉木林扩张带(包括杉木林、杉木-毛竹混交林和毛竹林)的凋落物(O层)和不同发生层土壤(A层、B层和BC层)为研究对象,通过分析凋落物和土壤样品中的氨基糖含量来表征微生物残体碳累积效应,并进一步评价微生物在土壤有机碳(SOC)形成过程中的作用。结果表明:毛竹扩张使杉木林凋落物数量和碳含量显著降低,但是凋落物中真菌残体碳(MRC-f)、细菌残体碳(MRC-b)和微生物残体碳(MRC)含量均显著增加;毛竹扩张显著提高了杉木林SOC、MRC-f、MRC-b和MRC含量,而且在毛竹扩张初期(杉木林演替为杉木-毛竹混交林)MRC-f、MRC-b和MRC在SOC中的比例也显著增加,说明毛竹扩张增强杉木林土壤MRC累积效应的同时,也提高了微生物对有机碳的贡献。而毛竹扩张后期MRC-f、MRC-b和MRC占SOC比例并没有显著变化,意味着毛竹扩张后期MRC和植物源残体碳对SOC含量的提升均有贡献,且两者贡献的相对比例保持不变。土壤MRC含量随着剖面深度的加深逐渐下降,而MRC占SOC比值却随着土壤深度的增加而逐渐升高,说明深层土壤中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号