首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An engineered Tn10-encoded Tet repressor, bearing a single Trp residue at position 43, in the putative alpha-helix-turn-alpha-helix motif of the operator binding domain, was studied by time-resolved fluorescence and anisotropy. Fluorescence intensity decay data suggested the existence of two classes of Trp-43, defined by different lifetimes. Analysis of anisotropy data were consistent with a model in which each class was defined by a different lifetime, rotational correlation time, and fluorescence emission maximum. The long-lifetime class had a red-shifted spectrum, similar to that of tryptophan zwitterion in water, and a short rotational correlation time. In contrast, the spectrum of the short-lifetime class was blue-shifted 10 nm compared to that of the long-lifetime class. Its correlation time was similar to that of the protein, which showed that Trp in this class was entirely constrained. Trp in this latter class could not be quenched by iodide, whereas most of the long-lifetime class was easily accessible. Presence of disruptive agents, such as 1 M GuCl or 3 M KCl, did not alter markedly the lifetimes but increased the weight of the short-lifetime component. In the same time, the rotational correlation time of this component was dramatically reduced. Taken together, our data suggest that the long-lifetime class could correspond to the tryptophan residues exposed to solvent whereas the short-lifetime class would correspond to the tryptophan residues embedded inside the hydrophobic core holding the helix-turn-helix motif. Destabilization of hydrophobic interactions would lead to an increase in the weight of the latter class for entropic reasons. Analysis of the fluorescence parameters of Trp-43 could provide structural information on the operator binding domain of Tet repressor.  相似文献   

2.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

3.
Single-tryptophan-containing mutants of low adenylation state Escherichia coli glutamine synthetase (wild type has two tryptophans at positions 57 and 158) have been constructed and studied by multifrequency phase/modulation fluorescence spectroscopy. The W57L mutant (retains tryptophan at residue 158) and the W158S mutant (retains tryptophan at residue 57) are both characterized by heterogeneous exponential decay kinetics. Global analysis indicates that for the Mn-bound form of the enzyme at pH 7.4 the fluorescence of both tryptophans is best described by a sum of three discrete expontials with recovered lifetimes of 4.77, 1.72, and 0.10 ns for Trp-57 and 5.04, 2.28, and 0.13 ns for Trp-158. The wild-type enzyme also exhibits decay kinetics described by a triple-exponential model with similar lifetime components. The individual tryptophans are distinguishable by the fractional intensities of the resolvable lifetimes. The wild-type and W158S enzymes are dominated by the 5-ns component which provides nearly 60% and 65%, respectively, of the fractional intensity at five wavelengths spanning the emission spectrum. In contrast, the W57L enzyme demonstrates a larger fraction of the 2-ns lifetime species (60%) and only 35% of the longer lifetime component. The substrate ATP induces a shift to approximately 90% of the 5-ns component for the wild-type and W158S enzymes, whereas the W57L protein is essentially unaffected by this ligand. Steady-state quenching studies with iodide indicate that addition of ATP results in a 3.0-3.5-fold decrease in the apparent Stern-Volmer quenching constants for the wild-type and W158S enzymes. Phase/modulation experiments at several iodide concentrations indicate that the median, 2 ns, lifetime component is selectively quenched compared to the 5-ns lifetime component. These results suggest a model where ATP binding results in a shift in the equilibrium distribution of microconformational states populated by Trp-57. ATP shifts this equilibrium nearly completely to the states exhibiting the long-lifetime component which, based on quenching studies, is less solvent-accessible than the conformational states associated with the other lifetime components.  相似文献   

4.
Binding of Nile Red to tubulin enhances and blue-shifts fluorescence emission to about 623 nm with a "shoulder" around 665 nm. Binding is reversible and saturable with an apparent Kd of approximately 0.6 microM. Nile Red does not alter tubulin polymerization, and polymerization in 2-(N-morpholino)ethanesulfonic acid (Mes) buffer does not alter the spectrum of the Nile Red-tubulin complex. In contrast, polymerization in glutamate buffer results in a red shift, reduction of intensity, and a decrease in lifetime, suggesting an increase in "polarity" of the binding environment. Lifetimes of 4.5 and 0.6 ns fluorescence in Mes buffer are associated with the 623-nm peak and the 665-nm shoulder, respectively. Indirect excitation spectra for these components are distinct and the 4.5-ns component exhibits tryptophan to Nile Red energy transfer. Acrylamide quenching yields linear Stern-Volmer plots with unchanged lifetimes, indicating static quenching. Apparent quenching constants are wavelength-dependent; global analysis reveals a quenchable component corresponding to the 4.5 ns component and an "unquenchable" component superposing the 0.6-ns spectrum. Analysis of anisotropy decay required an "associative" model which yielded rotational correlation times of greater than 50 ns for the 4.5-ns lifetime and 0.3 ns for the 0.6-ns lifetime. Dilution of tubulin in Mes results in an apparent red shift of emission without lifetime changes, due only to loss of the 623-nm component. These data are reconciled in terms of a model with two binding sites on the tubulin dimer. The more "nonpolar" site is located in a region of subunit-subunit contact which accounts for the fluorescence changes upon dilution; this permits estimation of a subunit dissociation constant of 1 microM.  相似文献   

5.
6.
The heterogeneous fluorescence of yeast 3-phosphoglycerate kinase, a hinge-bending enzyme with two tryptophan residues, has been resolved into three emission components using steady-state and time-resolved studies of the fluorescence quenching by acrylamide, iodide and caesium ions at different emission wavelengths. The buried Trp-333 has a blue-shifted heterogeneous emission spectrum characterised by three fluorescence lifetimes, and is inaccessible to quenchers. The surface Trp-308 also has a heterogeneous emission with multiple lifetimes. The emission of Trp-308 can be separated into a blue-shifted emission accessible to acrylamide and caesium only, and a red-shifted emission accessible to all three quenchers.  相似文献   

7.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

8.
Steady-state and time-resolved fluorescence measurements were performed on a Dictyostelium discoideum myosin II motor domain construct retaining a single tryptophan residue at position 501, located on the relay loop. Other tryptophan residues were mutated to phenylalanine. The Trp-501 residue showed a large enhancement in fluorescence in the presence of ATP and a small quench in the presence of ADP as a result of perturbing both the ground and excited state processes. Fluorescence lifetime and quantum yield measurements indicated that at least three microstates of Trp-501 were present in all nucleotide states examined, and these could not be assigned to a particular gross conformation of the motor domain. Enhancement in emission intensity was associated with a reduction of the contribution from a statically quenched component and an increase in a component with a 5-ns lifetime, with little change in the contribution from a 1-ns lifetime component. Anisotropy measurements indicated that the Trp-501 side chain was relatively immobile in all nucleotide states, and the fluorescence was effectively depolarized by rotation of the whole motor domain with a correlation time on 50-70 ns. Overall these data suggest that the backbone of the relay loop remains structured throughout the myosin ATPase cycle but that the Trp-501 side chain experiences a different weighting in local environments provided by surrounding residues as the adjacent converter domain rolls around the relay loop.  相似文献   

9.
Adenosine deaminase, a purine salvage enzyme essential for immune competence, was studied by time-resolved fluorescence spectroscopy. The heterogeneous emission from this four-tryptophan protein was separated into three lifetime components: tau 1 = 1 ns and tau 2 = 2.2 ns an emission maximum at about 330 nm and tau 3 = 6.3 ns with emission maximum at about 340 nm. Solvent accessibility of the tryptophan emission was probed with polar and nonpolar fluorescence quenchers. Acrylamide, iodide, and trichloroethanol quenched emission from all three components. Acrylamide quenching caused a blue shift in the decay-associated spectrum of component 3. The ground-state analogue enzyme inhibitor purine riboside quenched emission associated with component 2 whereas the transition-state analogue inhibitor deoxycoformycin quenched emission from both components 2 and 3. The quenching due to inhibitor binding had no effect on the lifetimes or emission maxima of the decay-associated spectra. These observations can be explained by a simple model of four tryptophan environments. Quenching studies of the enzyme-inhibitor complexes indicate that adenosine deaminase undergoes different protein conformation changes upon binding of ground- and transition-state analogue inhibitors. The results are consistent with localized structural alterations in the enzyme.  相似文献   

10.
Liu R  Siemiarczuk A  Sharom FJ 《Biochemistry》2000,39(48):14927-14938
P-glycoprotein is a member of the ATP binding cassette family of membrane proteins, and acts as an ATP-driven efflux pump for a diverse group of hydrophobic drugs, natural products, and peptides. The side chains of aromatic amino acids have been proposed to play an important role in recognition and binding of substrates by P-glycoprotein. Steady-state and lifetime fluorescence techniques were used to probe the environment of the 11 tryptophan residues within purified functional P-glycoprotein, and their response to binding of nucleotides and substrates. The emission spectrum of P-glycoprotein indicated that these residues are present in a relatively nonpolar environment, and time-resolved experiments showed the existence of at least two lifetimes. Quenching studies with acrylamide and iodide indicated that those tryptophan residues predominantly contributing to fluorescence emission are buried within the protein structure. Only small differences in Stern-Volmer quenching constants were noted on binding of nucleotides and drugs, arguing against large changes in tryptophan accessibility following substrate binding. P-glycoprotein fluorescence was highly quenched on binding of fluorescent nucleotides, and moderately quenched by ATP, ADP, and AMP-PNP, suggesting that the site for nucleotide binding is located relatively close to tryptophan residues. Drugs, modulators, hydrophobic peptides, and nucleotides quenched the fluorescence of P-glycoprotein in a saturable fashion, allowing estimation of dissociation constants. Many compounds exhibited biphasic quenching, suggesting the existence of multiple drug binding sites. The quenching observed for many substrates was attributable largely to resonance energy transfer, indicating that these compounds may be located close to tryptophan residues within, or adjacent to, the membrane-bound domains. Thus, the regions of P-glycoprotein involved in nucleotide and drug binding appear to be packed together compactly, which would facilitate coupling of ATP hydrolysis to drug transport.  相似文献   

11.
Prasad S  Mazumdar S  Mitra S 《FEBS letters》2000,477(3):157-160
The binding of camphor to cytochrome P450(cam) has been investigated by steady-state and time-resolved tryptophan fluorescence spectroscopy to obtain information on the substrate access channel. The fluorescence quenching experiments show that some of the tryptophan residues undergo changes in their local environment on camphor binding. The time-resolved fluorescence decay profile gives four lifetime components in the range from 99 ps to 4.5 ns. The shortest lifetime component assigned to W42 lies close to the proposed camphor access channel. The results show that the fluorescence of W42 is greatly affected on binding of camphor, and supports dynamic fluctuations involved in the passage of camphor through the access channel as proposed earlier on the basis of crystallographic, molecular dynamics simulation and site-directed mutagenesis studies.  相似文献   

12.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

13.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

14.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

15.
Recent characterization of spinach phosphoribulokinase has revealed that the homodimeric molecule contains only two tryptophans per 44-kDa subunit. We have performed steady-state and frequency domain studies of the intrinsic fluorescence of this protein. The fluorescence properties reflect contributions from both types of tryptophan residues. One of these appears to be relatively exposed to solvent and the quencher, acrylamide; fluoresce with a lambda max of 345 nm; decay with a fluorescence lifetime of 6.3 ns; have a relatively red-shifted absorption spectrum; and have a certain degree of independent motional freedom, with respect to the protein. The other tryptophan residue appears to be more buried; fluoresce with lambda max of 325 nm; have a lifetime of 1.7 ns; have a relatively blue-shifted absorption spectrum; and not to enjoy independent motional freedom. On comparison of phase-resolved spectral data and solute quenching data, we suggest that resonance energy transfer between the blue and red tryptophan residues may occur. We also describe the strategy of simultaneously fitting Stern-Volmer quenching data collected at two emission wavelengths.  相似文献   

16.
The tryptophyl fluorescence emission of yeast 3-phosphoglycerate kinase decreases from pH 3.9 to pH 7.2 following a normal titration curve with an apparent pK of 4.7. The fluorescence decays have been determined at both extreme pH by photocounting pulse fluorimetry and have been found to vary with the emission wavelength. A quantitative analysis of these results according to a previously described method allows to determine the emission characteristics of the two tryptophan residues present in the protein molecule. At pH 3.9, one of the tryptophan residues is responsible for only 13% of the total fluorescence emission. This first residue has a lifetime τ1= 0.6 ns and a maximum fluorescence wavelength λ2max = 332 nm. The second tryptophan residue exhibits two lifetimes τ21= 3.1 ns and τ22= 7.0 ns (λ2max= 338 nm). In agreement with the attribution of τ21and τ32 to the same tryptophan residue, the ratio β = C21/C22 of the normalized amplitudes is constant along the fluorescence emission spectrum. At pH 7.2, the two tryptophan residues contribute almost equally tc the protein fluorescence. The decay time of tryptophan 1 is 0.4 ns. The other emission parameters are the same as those determined at pH 3.9. We conclude that the fluorescence quenching in the range pH 3.9 to pH 8.0 comes essentially from the formation of a non emitting internal ground state complex between the tryptophan having the longest decay times and a neighbouring protein chemical group. The intrinsic pK of this group and the equilibrium constant of the irternal complex can be estimated. The quenching group is thought to be a carboxylate anion. Excitation transfers between the two tryptophyl residues of the protein molecule appear to have a small efficiency.  相似文献   

17.
Pyruvate kinase acts as an allosteric enzyme, playing a crucial role in the catalysis of the final step of the glycolytic pathway. In this study, site-specific mutagenesis and tryptophan fluorescence quenching were used to probe the catalytic allosteric mechanism of rabbit muscle pyruvate kinase. Movement of the B domain was found to be essential for the catalytic reaction. Rotation of the B domain in the opening of the cleft between domains B and A induced by the binding of activating cations allows substrates to bind, whereas substrate binding shifts the rotation of the B domain in the closure of the cleft. Trp-157 accounts for the differences in tryptophan fluorescence signal with and without activating cations and substrates. Trp-481 and Trp-514 are brought into an aqueous environment after phenylalanine binding.  相似文献   

18.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

19.
The fluorescence lifetime of the single tryptophan in whiting parvalbumin has been measured by time-correlated single-photon counting. In the presence of saturating calcium, greater than 2 mol/mol of protein, the decay of fluorescence is accurately single exponential with a lifetime of 4.6 ns (0.1 M KCl, 20 mM borate, 1 mM dithiothreitol, 20 degrees C, pH 9). Upon complete removal of calcium from parvalbumin with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid the emission decay becomes biphasic, and a second more rapid decay process with a lifetime of 1.3 ns comprising approximately 18% of the fluorescence emission at 350 nm is observed. The fluorescence emission of the calcium-saturated form is not measurably quenched by iodide. In contrast, upon complete removal of calcium, the fluorescence is completely quenchable as shown by extrapolation of the data to infinite iodide concentration. These results indicate that there is a large increase in the accessibility of the tryptophan residue in the protein to solvent upon removal of calcium. Stern-Volmer plots of the quenching data are nonlinear and indicate that there is more than one quenchable conformation of the calcium-free protein. The lifetime and quenching results are consistent with the presence of significant concentrations of only two stoichiometric species, apoparvalbumin and parvalbumin--Ca2, at partial occupancy of the calcium binding sites.  相似文献   

20.
A multifrequency phase fluorometric study is described for wild-type barnase and engineered mutant proteins in which tryptophan residues have been replaced by less fluorescent residues which do not interfere with the determination of the tryptophan emission spectra and lifetimes. The lifetimes of the three tryptophans in the wild-type protein have been resolved. Trp-35 has a single fluorescence lifetime, which varies in the different proteins between 4.3 and 4.8 ns and is pH-independent between pH 5.8 and 8.9. Trp-71 and Trp-94 behave as an energy-transfer couple with both forward and reverse energy transfer. The couple shows two fluorescence lifetimes: 2.42 (+/-0.2) and 0.74 (+/-0.1) ns at pH 8.9, and 0.89 (+/-0.05) and 0.65 (+/-0.05) ns at pH 5.8. In the mutant Trp-94----Phe the lifetime of Trp-71 is 4.73 (+/-0.008) ns at high pH and 4.70 (+/-0.004) ns at low pH. In the mutant Trp-71----Tyr, the lifetime of Trp-94 is 1.57 (+/-0.01) ns at high pH and 0.82 (+/-0.025) ns at low pH. From these lifetimes, one-way energy-transfer efficiencies can be calculated according to Porter [Porter, G.B. (1972) Theor. Chim. Acta 24, 265-270]. At pH 8.9, a 71% efficiency was found for forward transfer (from Trp-71 to Trp-94) and 36% for reverse transfer. At pH 5.8 the transfer efficiency was 86% for forward and 4% for reverse transfer (all +/-2%). These transfer efficiencies correspond fairly well with the ones calculated according to the theory of F?rster [F?rster, T. (1948) Ann. Phys. (Leipzig) 2, 55-75].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号